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Scope & Context of This Talk
Multiprocessor revolution
Error sources
Debugging techniques

For shared-memory symmetric 
multiprocessors
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Introduction & Background
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Vocabulary in the Multi Era
Multitasking: multiple 
tasks running on a single 
computer

Multiprocessor: multiple 
processors used to build 
a single computer system

Computer system

Task

Task

Task

Task Task

CPU CPU CPU
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Vocabulary in the Multi Era
AMP, Assymetric MP: 
Each processor has local 
memory, tasks statically 
allocated to one 
processor
SMP, Shared-Memory 
MP: Processors share 
memory, tasks 
dynamically scheduled to 
any processor

Task

CPU

Task

CPU

Task
TaskTask

Task

CPU

Task

CPU

TaskTask
Task
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Vocabulary in the Multi Era
Multicore: more than 
one processor on a 
single chip

CMP, Chip 
MultiProcessor: Shared-
memory multiprocessor 
on a single chip

Multicore chip

CPU CPU CPU

Chip Chip Chip

CPUCPU CPU
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Vocabulary in the Multi Era
MT, Multithreading: one 
processor appears as 
multiple thread. 
The threads share 
resources, not as 
powerful as multiple full 
processors. 
Very efficient for servers.

Chip

CPU

Thread Thread Thread
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Process, Thread, Task

This talk will use “task” for any software thread of control

Operating system

Process

Thread

Thread

Thread

Process

Thread

Thread

Desktop/Server model: each process 
in its own memory space, several 
threads in each process with access to 
the same memory. Memory protected 
between processes. 

Simple RTOS model: OS and all 
tasks share the same memory space, 
all memory accessible to all

Operating system

Task Task TaskTask App

Operating system

Application
TaskTask Task

Generic model: a number of tasks 
share some memory in order to 
implement an application
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Future Embedded Systems

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

Networketc.

Timer Serial

One shared memory space

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

etc.Network

Timer Serial

Network with local memory in each node
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Why Now?
More instruction-level parallelism hard to find
– Very complex designs needed for small gain

Clock frequency scaling is slowing drastically
– Too much power & heat when pushing envelope

Cannot communicate across chip fast enough
– Better to design small local units with short paths

Effective use of billions of transistors
– Easier to reuse a basic unit many times

Potential for very easy scaling
– Just keep adding processors/cores for higher performance
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The Software is the Problem
Parallelism required to gain performance
– Parallel hardware is “easy” to design
– Parallel software is hard to write

Fundamentally hard to grasp true concurrency 
– Especially in complex software environments

Existing software assumes single-processor
– Might break in new and interesting ways
– Multitasking no guarantee to run on multiprocessor
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Programming Models
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Programming Shared-Memory 
Synchronize & coordinate execution
Communicate between tasks
Ensure parallelism-safe access to shared data

Components of the basic solution:
– Shared memory
– Locks to protect shared data
– Synchronization primitives to coordinate execution
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Success: Classic Supercomputing
Regular programs
Parallelized loops + serial 
sections
Data dependencies 
between tasks
Very high scalability, 
1000s of processors

OpenMP, pthreads, MPI Main
Task

Task Task Task Task

Task Task Task
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Success: Servers
Natural parallelism 
Irregular length of parallel 
code, dynamic creation
Master task 
Slave tasks for each 
connection
Scales very well

OpenMP, OS API, MPI, 
pthreads, ... Main

Task

Client

Client
Client

Client

Client

Client

Client

Client
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Success: Signal Processing
“Embarrassing” natural 
parallelism 
– No shared data
– No communication
– No synchronization

Parallelizes to 1000s of 
tasks and processors

Good fit asymmetric MP Task Task Task Task Task Task
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Programming model: Posix Threads
Standard API
Explicit operations
Strong programmer 
control
Create & manipulate
– Locks
– Mutexes
– Threads
– etc.

main() { 

... 

pthread_t p_threads[MAX_THREADS]; 

pthread_attr_t attr; 

pthread_attr_init (&attr); 

for (i=0; i< num_threads; i++) { 

hits[i] = i; 

pthread_create(&p_threads[i], &attr, 
compute_pi, 

(void *) &hits[i]); 

} 

for (i=0; i< num_threads; i++) { 

pthread_join(p_threads[i], NULL); 

total_hits += hits[i]; 

} 

... 
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Programming model: OpenMP
Compiler directives
Special support in 
the compiler
Focus on loop-level 
parallel execution
Generates calls to 
threading libraries
Popular in high-end 
embedded

#pragma omp parallel private(nthreads, tid) 

{ 

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n",tid); 

if (tid == 0) 

{ 

nthreads = omp_get_num_threads();

printf("Number of threads: %d\n",nthreads); 

} 

} 
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Programming model: MPI
Standard API
Message-passing
– Local memory for each 

thread
– Explicit messages for 

communication 
– Shared memory hidden

main(int argc, char *argv[])

{

int npes, myrank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &npes);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

printf("From process %d out of %d,  

Hello World!\n", myrank, npes);

MPI_Finalize();

}
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What Goes Wrong?
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True Concurrency = Problems
Fundamentally new things happen
– Some phenomena cannot occur on a single 

processor running multiple threads
More stress for multitasking programs
– Exposes latent problems in code
– Multitasking != multiprocessor-ready
– Even well-tested code can break
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(Missing) Reentrancy
Code shared between tasks has to be reentrant
– No global variables
– No assumption of single thread of control

True concurrency = much higher chance of 
parallel execution of code
– Problem also occurs in multitasking
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Priorities are not Synchronization
Strict priority scheduling on single processor
– Tasks of same priority will be run sequentially
– No concurrent execution = no locking needed

Multiple processors
– Tasks of same priority will run in parallel
– Locking & synchronization needed
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Priorities are not Synchronization

CPU

Prio 6

Prio 6

Prio 5

Prio 7

Prio 6

Prio 7 Prio 6 Prio 6 Prio 6 Prio 5

Execution on a single CPU 
with strict priority 

scheduling: no concurrency 
between prio 6 tasks

Execution on a single CPU 
with strict priority 

scheduling: no concurrency 
between prio 6 tasks

CPU 1
Prio 6

Prio 6

Prio 5

Prio 7

Prio 6

CPU 2

Prio 7

Prio 6 Prio 6

Prio 6

Prio 5

Execution on multiple 
processors: several prio 6 

tasks execute 
simultaneously

Execution on multiple 
processors: several prio 6 

tasks execute 
simultaneously
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Disabling Interrupts is not Locking
Single processor: DI = cannot be interrupted
– Guaranteed exclusive access to whole machine
– Cheap mechanism, used in many drivers & kernels

Multiprocessor: DI = stop interrupts on one core
– Other cores keep running
– Shared data can be modified from the outside

Big issue for kernel porting & low-level code
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Race Condition
Tasks “race” to a common point
– Result depends on who gets there first
– Occurs due to lack of synchronization

Exists with just multitasking, but much more 
severe in multiprocessing
Solution: protect all shared data with locks, 
synchronize to ensure expected order of events
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Race Condition
Correct behavior Incorrect behavior

Task 1 Task 2Shared 
data

read

write
edit

read

write

Task 2 gets the 
updated value 

from task 1

edit

Task 2 gets the 
updated value 

from task 1

Task 1 Task 2Shared 
data

read

write

edit read

write

Task 1 and 
task 2 work on 
the same data

editTask 1 and 
task 2 work on 
the same data

Update from 
task 2 gets 

overwritten by 
task 1

Update from 
task 2 gets 

overwritten by 
task 1
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Race Condition: Messages
Expected sequence Incorrect sequence

Task 1 Task 3

msg1

msg2
Task 2 expects 
data from task 
1 first, and then 

from task 3

calc

Task 2 expects 
data from task 
1 first, and then 

from task 3

Task 2

calc

Task 1 Task 3

msg1

msg2

Messages can also arrive
in a different order. 

Program needs to handle
this or synchronize to 

enforce ordering

calc

Messages can also arrive
in a different order. 

Program needs to handle
this or synchronize to 

enforce ordering

Task 2

calc
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Deadlocks
Locks are intrinsic to parallel programming
– Necessary to protect shared data, for example

Taking multiple locks requires care
– Deadlock occurs if tasks take locks in different order
– Impose locking discipline/protocol to avoid
– Hard to see locks in shared libraries & OS code
– Locking order often hard to deduce

Deadlocks also occur in “regular” multitasking
But parallel programming requires multiple tasks
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Deadlocks
Lucky Execution

Task 1 Lock B

lock

Task 2Lock A

lock

unlock

unlock

lock 

wait...

lock

unlock

unlock

Deadlock Execution
Task 1 Lock B

lock

Task 2Lock A

lock

lock 

wait...
lock

wait...System is 
deadlocked with 
tasks waiting for 

the other to 
release a lock

System is 
deadlocked with 
tasks waiting for 

the other to 
release a lock
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Partial Crashes
A single task in a parallel program crashes
– Partial failure of program, leaves other tasks waiting
– For a single-task program, not a problem

Detect & recover/restart/gracefully quit
– Parallel programs require more error handling

More common in multiprocessor environments 
as more parallel programs are being used
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Parallel Task Start Fails
Programs need to check if parallel execution did 
indeed start as requested
– Check return codes from threading calls

For directive-based programming like OpenMP, 
there is no error checking available

Be careful!
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Invalid Timing Assumptions
We cannot assume that any code will run within 
a certain time-bound relative to other code
– Unless there is explicit synchronization & checks

Easy to make assumptions by mistake
– Will work most of the time
– Manifest under heavy load
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Invalid Timing Assumptions
Assumed Timing Erroneous Execution

Task 1 Task 2Data V

create (task 2)

write V initialize...

read V 

Assumption: 
initialize takes a 
long time, task 1 
will have time to 

write V

Assumption: 
initialize takes a 
long time, task 1 
will have time to 

write V

Task 1 Task 2Data V

create (task 2)

write V 

initialize...

read V 

Initialize finishes 
fast & task 1 

takes a long time: 
V read before 

value available

Initialize finishes 
fast & task 1 

takes a long time: 
V read before 

value available

hiccup...
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Relaxed Memory Ordering
Single processor: all memory operations will 
occur in program order*
– * as observed by the program running
– A read will always get the latest value written
– Fundamental assumption used in writing code

Multiprocessor: not so easy
– Processors can see operations in different order
– “Weak consistency” or “relaxed memory ordering”
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Relaxed Memory Ordering: Why?
Global unique ordering = needs synchronization
– For almost every instruction executed
– Would kill the performance of parallel computers

Solution: specify some slack for the system
– More slack = more opportunity to optimize
– More slack = allow more reordering of writes & reads
– More slack = more opportunity for weird bugs

Exploited by compilers, processors, and the 
memory system to reduce stall time
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Relaxed Memory Ordering: Example
Expected obvious case

Task 1

Task 1 writes variables 
X, Y, Z in order. Task 2 
reads them, and sees 
the values update in 

order X, Y, Z. 

Task 1 writes variables 
X, Y, Z in order. Task 2 
reads them, and sees 
the values update in 

order X, Y, Z. 

Task 2

read Y

read X

read Z

write Y

Legal less obvious case

write X

write Z

read Y

read X

Task 1

The writes to X & Y 
get delayed a little 

and are not observed 
by the first reads. 

The writes to X & Y 
get delayed a little 

and are not observed 
by the first reads. 

Task 2

read Y

read X

read Z

read Y

read X

write Y

write X

write Z

Later reads of X and 
Y sees new value. 
Apparent order of 
update is Z, X, Y.

Later reads of X and 
Y sees new value. 
Apparent order of 
update is Z, X, Y.

Disclaimer: This example is really brutally simplified. But it shows the gist of the problem.
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Relaxed Memory Ordering: Problem
Synchronization code from single-processor 
environments might break on a multiprocessor

Subtle bugs that appear only in extreme 
circumstances (high load, odd memory setups)

Programs have to use synchronization to 
ensure that data has arrived before using it 
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Relaxed Memory Ordering: Fixing
Use SMP-aware synchronization
Explicit data synchronization necessary

Read up on the particular memory consistency 
of your target platform
– ... and note that it is sometimes not implemented to 

its full freedom on current hardware ... 
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How Can We Debug It?
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Three Steps of Debugging
1. Provoking errors

– Forcing the system to a state where things break
2. Reproducing errors

– Recreating a provoked error reliably
3. Locating the source of errors 

– Investigating the program flow & data
– Depends on success in reproduction
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Parallel Debugging is Hard
Reproducing errors is hard
– Parallel errors depend on subtle timing, interactions 

between tasks, precise order of events
Heisenbugs
– Observing a bug makes it go away
– The intrusion of debugging changes system behavior

Bohr bugs
– Traditional bugs, depend on the controllable values 

of input data, easy to reproduce
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Breakpoints & Classic Debuggers
Still useful, but with several caveats:
– Stopping one task in a collaborating group might 

break the system
– A stopped task can be swamped with traffic

Desired tool support for multiprocessors:
– Synchronized stop of multiple processors
– Understanding of multiple tasks
– Inspection of multiple tasks



44

Tracing
Very powerful tool in general
Can provide powerful insight into execution 
– Especially when trace is “smart”

Weaknesses:
– Intrusiveness, changes timing
– Only traces certain aspects
– No data between trace points
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Tracing Methods...
Printf
– Added by user to program

Monitor task
– Special task snooping on application, added by user

Instrumentation
– Source or binary level, added by tool

Bus trace
– Less meaningful in a heavily cached system
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...Tracing Methods
Hardware trace
– Using trace support in hardware + trace buffer
– Mostly non-intrusive

Simulation
– Can trace any aspect of system
– Differences in timing, requires a simulation model
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Bigger Locks
Fine-grained locking:
– Individual data items
– Less blocking, higher performance
– More errors

Coarse locking:
– Entire data structures
– Entire sections of code
– Lower performance
– Less chance of errors, limits 

parallelism
Make locks coarser until 
program works

Working 
on this 
item

Working 
on this 
item

Fine-
grained 
locking

Fine-
grained 
locking

Coarse-
grained 
locking

Coarse-
grained 
locking
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Apply Heavy Load
Heavy load
– More interference in the system
– Higher chance of long latencies for communication
– Higher chance of unexpected blocking and delays
– Higher chance of concurrent access to data

Powerful method to break a parallel system
– Often reproduces errors with high likelihood

Requires good test cases & automation 
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Use Different Machine
Provokes errors by challenging assumptions
– Different number of processors
– Different speed of processors
– Different communications latency & cache sizes

It is easy to accidentally tie code to the machine 
the code is developed on
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Replay Execution
Record a system execution, replay it
– Solves reproduction problem, if an error is recorded
– Controlled replay minimizes the probe effect
– Apply debuggers during replay

Record asynchronous events & inputs
– Interactions between tasks
– Isolates the system from the outside world

Requires specialized tool support
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Reverse Debugging
Stop & go back in time
– Instead of rerunning 

program from start
– No need to rerun and hope 

for bug to reoccur
– Investigate exactly what 

happened this time
– Breakpoints & watchpoints

backwards in time
– Very powerful for parallel 

programs

Backup
Go forward

Only some runs 
reproduce the 

right error

Only some runs 
reproduce the 

right error



52

Reverse Debugging: Techniques
Trace-based
– Record system execution
– Special hardware support
– Use as “tape recorder”, 

fixed execution observed

Simulation-based
– Record in simulator
– Replay in same simulator
– Can change state and 

continue execution

Backup
Go forward

Backup

And go somewhere else
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Simulate the System
Simulation offers control over a system
– Vary parameters to provoke errors
– Inject variations in execution to provoke errors
– Reliable reproduction of problems
– Powerful inspection abilities
– No probe effect from tracing and breakpoints
– Can support record & replay, and reverse debugging
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Simulate the System: Modeling
Simulation requires a model of a system
– Need to run the same binaries as the real target
– Processors + memories + timers + devices + IO
– Several commercial tools available

Simulation is never quite like the real thing
– But close enough
– Any bugs found in simulation are valid bugs
– Precise timing simulation is not really possible
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Formal Methods
Static analysis tools
– Analyze source code to determine properties
– “Lint” for parallelism

Dynamic analysis tools
– Run a program, collect information, analyze
– Check that a program follows certain rules

Locking discipline, for example

Some tools exist
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Questions?
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Thank You!

Please remember to fill in the course 
evaluation forms!
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