
1

Debugging Multicore & Shared-
Memory Embedded Systems

Jakob Engblom, PhD
Virtutech
jakob@virtutech.com

2

Scope & Context of This Talk
Multiprocessor revolution
Error sources
Debugging techniques

For shared-memory symmetric
multiprocessors

3

Introduction & Background

4

Vocabulary in the Multi Era
Multitasking: multiple
tasks running on a single
computer

Multiprocessor: multiple
processors used to build
a single computer system

Computer system

Task

Task

Task

Task Task

CPU CPU CPU

5

Vocabulary in the Multi Era
AMP, Assymetric MP:
Each processor has local
memory, tasks statically
allocated to one
processor
SMP, Shared-Memory
MP: Processors share
memory, tasks
dynamically scheduled to
any processor

Task

CPU

Task

CPU

Task
TaskTask

Task

CPU

Task

CPU

TaskTask
Task

6

Vocabulary in the Multi Era
Multicore: more than
one processor on a
single chip

CMP, Chip
MultiProcessor: Shared-
memory multiprocessor
on a single chip

Multicore chip

CPU CPU CPU

Chip Chip Chip

CPUCPU CPU

7

Vocabulary in the Multi Era
MT, Multithreading: one
processor appears as
multiple thread.
The threads share
resources, not as
powerful as multiple full
processors.
Very efficient for servers.

Chip

CPU

Thread Thread Thread

8

Process, Thread, Task

This talk will use “task” for any software thread of control

Operating system

Process

Thread

Thread

Thread

Process

Thread

Thread

Desktop/Server model: each process
in its own memory space, several
threads in each process with access to
the same memory. Memory protected
between processes.

Simple RTOS model: OS and all
tasks share the same memory space,
all memory accessible to all

Operating system

Task Task TaskTask App

Operating system

Application
TaskTask Task

Generic model: a number of tasks
share some memory in order to
implement an application

9

Future Embedded Systems

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

Networketc.

Timer Serial

One shared memory space

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

etc.Network

Timer Serial

Network with local memory in each node

10

Why Now?
More instruction-level parallelism hard to find
– Very complex designs needed for small gain

Clock frequency scaling is slowing drastically
– Too much power & heat when pushing envelope

Cannot communicate across chip fast enough
– Better to design small local units with short paths

Effective use of billions of transistors
– Easier to reuse a basic unit many times

Potential for very easy scaling
– Just keep adding processors/cores for higher performance

11

The Software is the Problem
Parallelism required to gain performance
– Parallel hardware is “easy” to design
– Parallel software is hard to write

Fundamentally hard to grasp true concurrency
– Especially in complex software environments

Existing software assumes single-processor
– Might break in new and interesting ways
– Multitasking no guarantee to run on multiprocessor

12

Programming Models

13

Programming Shared-Memory
Synchronize & coordinate execution
Communicate between tasks
Ensure parallelism-safe access to shared data

Components of the basic solution:
– Shared memory
– Locks to protect shared data
– Synchronization primitives to coordinate execution

14

Success: Classic Supercomputing
Regular programs
Parallelized loops + serial
sections
Data dependencies
between tasks
Very high scalability,
1000s of processors

OpenMP, pthreads, MPI Main
Task

Task Task Task Task

Task Task Task

15

Success: Servers
Natural parallelism
Irregular length of parallel
code, dynamic creation
Master task
Slave tasks for each
connection
Scales very well

OpenMP, OS API, MPI,
pthreads, ... Main

Task

Client

Client
Client

Client

Client

Client

Client

Client

16

Success: Signal Processing
“Embarrassing” natural
parallelism
– No shared data
– No communication
– No synchronization

Parallelizes to 1000s of
tasks and processors

Good fit asymmetric MP Task Task Task Task Task Task

17

Programming model: Posix Threads
Standard API
Explicit operations
Strong programmer
control
Create & manipulate
– Locks
– Mutexes
– Threads
– etc.

main() {

...

pthread_t p_threads[MAX_THREADS];

pthread_attr_t attr;

pthread_attr_init (&attr);

for (i=0; i< num_threads; i++) {

hits[i] = i;

pthread_create(&p_threads[i], &attr,
compute_pi,

(void *) &hits[i]);

}

for (i=0; i< num_threads; i++) {

pthread_join(p_threads[i], NULL);

total_hits += hits[i];

}

...

18

Programming model: OpenMP
Compiler directives
Special support in
the compiler
Focus on loop-level
parallel execution
Generates calls to
threading libraries
Popular in high-end
embedded

#pragma omp parallel private(nthreads, tid)

{

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n",tid);

if (tid == 0)

{

nthreads = omp_get_num_threads();

printf("Number of threads: %d\n",nthreads);

}

}

19

Programming model: MPI
Standard API
Message-passing
– Local memory for each

thread
– Explicit messages for

communication
– Shared memory hidden

main(int argc, char *argv[])

{

int npes, myrank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &npes);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

printf("From process %d out of %d,

Hello World!\n", myrank, npes);

MPI_Finalize();

}

20

What Goes Wrong?

21

True Concurrency = Problems
Fundamentally new things happen
– Some phenomena cannot occur on a single

processor running multiple threads
More stress for multitasking programs
– Exposes latent problems in code
– Multitasking != multiprocessor-ready
– Even well-tested code can break

22

(Missing) Reentrancy
Code shared between tasks has to be reentrant
– No global variables
– No assumption of single thread of control

True concurrency = much higher chance of
parallel execution of code
– Problem also occurs in multitasking

23

Priorities are not Synchronization
Strict priority scheduling on single processor
– Tasks of same priority will be run sequentially
– No concurrent execution = no locking needed

Multiple processors
– Tasks of same priority will run in parallel
– Locking & synchronization needed

24

Priorities are not Synchronization

CPU

Prio 6

Prio 6

Prio 5

Prio 7

Prio 6

Prio 7 Prio 6 Prio 6 Prio 6 Prio 5

Execution on a single CPU
with strict priority

scheduling: no concurrency
between prio 6 tasks

Execution on a single CPU
with strict priority

scheduling: no concurrency
between prio 6 tasks

CPU 1
Prio 6

Prio 6

Prio 5

Prio 7

Prio 6

CPU 2

Prio 7

Prio 6 Prio 6

Prio 6

Prio 5

Execution on multiple
processors: several prio 6

tasks execute
simultaneously

Execution on multiple
processors: several prio 6

tasks execute
simultaneously

25

Disabling Interrupts is not Locking
Single processor: DI = cannot be interrupted
– Guaranteed exclusive access to whole machine
– Cheap mechanism, used in many drivers & kernels

Multiprocessor: DI = stop interrupts on one core
– Other cores keep running
– Shared data can be modified from the outside

Big issue for kernel porting & low-level code

26

Race Condition
Tasks “race” to a common point
– Result depends on who gets there first
– Occurs due to lack of synchronization

Exists with just multitasking, but much more
severe in multiprocessing
Solution: protect all shared data with locks,
synchronize to ensure expected order of events

27

Race Condition
Correct behavior Incorrect behavior

Task 1 Task 2Shared
data

read

write
edit

read

write

Task 2 gets the
updated value

from task 1

edit

Task 2 gets the
updated value

from task 1

Task 1 Task 2Shared
data

read

write

edit read

write

Task 1 and
task 2 work on
the same data

editTask 1 and
task 2 work on
the same data

Update from
task 2 gets

overwritten by
task 1

Update from
task 2 gets

overwritten by
task 1

28

Race Condition: Messages
Expected sequence Incorrect sequence

Task 1 Task 3

msg1

msg2
Task 2 expects
data from task
1 first, and then

from task 3

calc

Task 2 expects
data from task
1 first, and then

from task 3

Task 2

calc

Task 1 Task 3

msg1

msg2

Messages can also arrive
in a different order.

Program needs to handle
this or synchronize to

enforce ordering

calc

Messages can also arrive
in a different order.

Program needs to handle
this or synchronize to

enforce ordering

Task 2

calc

29

Deadlocks
Locks are intrinsic to parallel programming
– Necessary to protect shared data, for example

Taking multiple locks requires care
– Deadlock occurs if tasks take locks in different order
– Impose locking discipline/protocol to avoid
– Hard to see locks in shared libraries & OS code
– Locking order often hard to deduce

Deadlocks also occur in “regular” multitasking
But parallel programming requires multiple tasks

30

Deadlocks
Lucky Execution

Task 1 Lock B

lock

Task 2Lock A

lock

unlock

unlock

lock

wait...

lock

unlock

unlock

Deadlock Execution
Task 1 Lock B

lock

Task 2Lock A

lock

lock

wait...
lock

wait...System is
deadlocked with
tasks waiting for

the other to
release a lock

System is
deadlocked with
tasks waiting for

the other to
release a lock

31

Partial Crashes
A single task in a parallel program crashes
– Partial failure of program, leaves other tasks waiting
– For a single-task program, not a problem

Detect & recover/restart/gracefully quit
– Parallel programs require more error handling

More common in multiprocessor environments
as more parallel programs are being used

32

Parallel Task Start Fails
Programs need to check if parallel execution did
indeed start as requested
– Check return codes from threading calls

For directive-based programming like OpenMP,
there is no error checking available

Be careful!

33

Invalid Timing Assumptions
We cannot assume that any code will run within
a certain time-bound relative to other code
– Unless there is explicit synchronization & checks

Easy to make assumptions by mistake
– Will work most of the time
– Manifest under heavy load

34

Invalid Timing Assumptions
Assumed Timing Erroneous Execution

Task 1 Task 2Data V

create (task 2)

write V initialize...

read V

Assumption:
initialize takes a
long time, task 1
will have time to

write V

Assumption:
initialize takes a
long time, task 1
will have time to

write V

Task 1 Task 2Data V

create (task 2)

write V

initialize...

read V

Initialize finishes
fast & task 1

takes a long time:
V read before

value available

Initialize finishes
fast & task 1

takes a long time:
V read before

value available

hiccup...

35

Relaxed Memory Ordering
Single processor: all memory operations will
occur in program order*
– * as observed by the program running
– A read will always get the latest value written
– Fundamental assumption used in writing code

Multiprocessor: not so easy
– Processors can see operations in different order
– “Weak consistency” or “relaxed memory ordering”

36

Relaxed Memory Ordering: Why?
Global unique ordering = needs synchronization
– For almost every instruction executed
– Would kill the performance of parallel computers

Solution: specify some slack for the system
– More slack = more opportunity to optimize
– More slack = allow more reordering of writes & reads
– More slack = more opportunity for weird bugs

Exploited by compilers, processors, and the
memory system to reduce stall time

37

Relaxed Memory Ordering: Example
Expected obvious case

Task 1

Task 1 writes variables
X, Y, Z in order. Task 2
reads them, and sees
the values update in

order X, Y, Z.

Task 1 writes variables
X, Y, Z in order. Task 2
reads them, and sees
the values update in

order X, Y, Z.

Task 2

read Y

read X

read Z

write Y

Legal less obvious case

write X

write Z

read Y

read X

Task 1

The writes to X & Y
get delayed a little

and are not observed
by the first reads.

The writes to X & Y
get delayed a little

and are not observed
by the first reads.

Task 2

read Y

read X

read Z

read Y

read X

write Y

write X

write Z

Later reads of X and
Y sees new value.
Apparent order of
update is Z, X, Y.

Later reads of X and
Y sees new value.
Apparent order of
update is Z, X, Y.

Disclaimer: This example is really brutally simplified. But it shows the gist of the problem.

38

Relaxed Memory Ordering: Problem
Synchronization code from single-processor
environments might break on a multiprocessor

Subtle bugs that appear only in extreme
circumstances (high load, odd memory setups)

Programs have to use synchronization to
ensure that data has arrived before using it

39

Relaxed Memory Ordering: Fixing
Use SMP-aware synchronization
Explicit data synchronization necessary

Read up on the particular memory consistency
of your target platform
– ... and note that it is sometimes not implemented to

its full freedom on current hardware ...

40

How Can We Debug It?

41

Three Steps of Debugging
1. Provoking errors

– Forcing the system to a state where things break
2. Reproducing errors

– Recreating a provoked error reliably
3. Locating the source of errors

– Investigating the program flow & data
– Depends on success in reproduction

42

Parallel Debugging is Hard
Reproducing errors is hard
– Parallel errors depend on subtle timing, interactions

between tasks, precise order of events
Heisenbugs
– Observing a bug makes it go away
– The intrusion of debugging changes system behavior

Bohr bugs
– Traditional bugs, depend on the controllable values

of input data, easy to reproduce

43

Breakpoints & Classic Debuggers
Still useful, but with several caveats:
– Stopping one task in a collaborating group might

break the system
– A stopped task can be swamped with traffic

Desired tool support for multiprocessors:
– Synchronized stop of multiple processors
– Understanding of multiple tasks
– Inspection of multiple tasks

44

Tracing
Very powerful tool in general
Can provide powerful insight into execution
– Especially when trace is “smart”

Weaknesses:
– Intrusiveness, changes timing
– Only traces certain aspects
– No data between trace points

45

Tracing Methods...
Printf
– Added by user to program

Monitor task
– Special task snooping on application, added by user

Instrumentation
– Source or binary level, added by tool

Bus trace
– Less meaningful in a heavily cached system

46

...Tracing Methods
Hardware trace
– Using trace support in hardware + trace buffer
– Mostly non-intrusive

Simulation
– Can trace any aspect of system
– Differences in timing, requires a simulation model

47

Bigger Locks
Fine-grained locking:
– Individual data items
– Less blocking, higher performance
– More errors

Coarse locking:
– Entire data structures
– Entire sections of code
– Lower performance
– Less chance of errors, limits

parallelism
Make locks coarser until
program works

Working
on this
item

Working
on this
item

Fine-
grained
locking

Fine-
grained
locking

Coarse-
grained
locking

Coarse-
grained
locking

48

Apply Heavy Load
Heavy load
– More interference in the system
– Higher chance of long latencies for communication
– Higher chance of unexpected blocking and delays
– Higher chance of concurrent access to data

Powerful method to break a parallel system
– Often reproduces errors with high likelihood

Requires good test cases & automation

49

Use Different Machine
Provokes errors by challenging assumptions
– Different number of processors
– Different speed of processors
– Different communications latency & cache sizes

It is easy to accidentally tie code to the machine
the code is developed on

50

Replay Execution
Record a system execution, replay it
– Solves reproduction problem, if an error is recorded
– Controlled replay minimizes the probe effect
– Apply debuggers during replay

Record asynchronous events & inputs
– Interactions between tasks
– Isolates the system from the outside world

Requires specialized tool support

51

Reverse Debugging
Stop & go back in time
– Instead of rerunning

program from start
– No need to rerun and hope

for bug to reoccur
– Investigate exactly what

happened this time
– Breakpoints & watchpoints

backwards in time
– Very powerful for parallel

programs

Backup
Go forward

Only some runs
reproduce the

right error

Only some runs
reproduce the

right error

52

Reverse Debugging: Techniques
Trace-based
– Record system execution
– Special hardware support
– Use as “tape recorder”,

fixed execution observed

Simulation-based
– Record in simulator
– Replay in same simulator
– Can change state and

continue execution

Backup
Go forward

Backup

And go somewhere else

53

Simulate the System
Simulation offers control over a system
– Vary parameters to provoke errors
– Inject variations in execution to provoke errors
– Reliable reproduction of problems
– Powerful inspection abilities
– No probe effect from tracing and breakpoints
– Can support record & replay, and reverse debugging

54

Simulate the System: Modeling
Simulation requires a model of a system
– Need to run the same binaries as the real target
– Processors + memories + timers + devices + IO
– Several commercial tools available

Simulation is never quite like the real thing
– But close enough
– Any bugs found in simulation are valid bugs
– Precise timing simulation is not really possible

55

Formal Methods
Static analysis tools
– Analyze source code to determine properties
– “Lint” for parallelism

Dynamic analysis tools
– Run a program, collect information, analyze
– Check that a program follows certain rules

Locking discipline, for example

Some tools exist

56

Questions?

57

Thank You!

Please remember to fill in the course
evaluation forms!

	Debugging Multicore & Shared-Memory Embedded Systems
	Scope & Context of This Talk
	Introduction & Background
	Vocabulary in the Multi Era
	Vocabulary in the Multi Era
	Vocabulary in the Multi Era
	Vocabulary in the Multi Era
	Process, Thread, Task
	Future Embedded Systems
	Why Now?
	The Software is the Problem
	Programming Models
	Programming Shared-Memory
	Success: Classic Supercomputing
	Success: Servers
	Success: Signal Processing
	Programming model: Posix Threads
	Programming model: OpenMP
	Programming model: MPI
	What Goes Wrong?
	True Concurrency = Problems
	(Missing) Reentrancy
	Priorities are not Synchronization
	Priorities are not Synchronization
	Disabling Interrupts is not Locking
	Race Condition
	Race Condition
	Race Condition: Messages
	Deadlocks
	Deadlocks
	Partial Crashes
	Parallel Task Start Fails
	Invalid Timing Assumptions
	Invalid Timing Assumptions
	Relaxed Memory Ordering
	Relaxed Memory Ordering: Why?
	Relaxed Memory Ordering: Example
	Relaxed Memory Ordering: Problem
	Relaxed Memory Ordering: Fixing
	How Can We Debug It?
	Three Steps of Debugging
	Parallel Debugging is Hard
	Breakpoints & Classic Debuggers
	Tracing
	Tracing Methods...
	...Tracing Methods
	Bigger Locks
	Apply Heavy Load
	Use Different Machine
	Replay Execution
	Reverse Debugging
	Reverse Debugging: Techniques
	Simulate the System
	Simulate the System: Modeling
	Formal Methods
	Questions?
	Thank You!
	Spare Slides
	Multicore & Power
	Power Efficiency of Multicore
	Problem: Multicore

