
Simics® Accelerator: 
Creating a Parallel Program 

out of a Serial Problem

Jakob Engblom, PhD
Technical Marketing Manager, Virtutech 

jakob@virtutech.com



Overview

• We have what looks like a stubbornly sequential 
problem that we need to make go faster

• Rethink and slightly redefine the problem domain
• Out comes a decently concurrent solution

12 Sep 2008SiCS Multicore Days 20082

Stubbornly Sequential

• Programs and algorithms 
with hard-to-break 
sequential behavior

• The best solution appears 
to be a sequential algorithm

• Ex: Shortest path

Embarrasingly Parallel 
(Conveniently Concurrent)

• Obvious and trivial 
parallelism

• Many independent 
computations 

• “Embarrassing if you cannot 
make a scalable parallel 
solution”

• Ex: Signal processing on 
multiple streams, media 
codecs, web servers, web 
search, routing, packet 
scan

Decently Concurrent

• Problem domain offers 
parallelism 

• But not as parallel as the 
convenient problems 

• Each thread can be quite 
different from other threads

• Ex: Multiple independent 
programs, game engines 
(AI, physics, graphics, …)

http://amdahlslaw.blogspot.com/2008/07/take‐1000‐out‐of‐my‐pocket‐for‐thinking.html, 
http://www.chipdesignmag.com/martins/2008/08/04/inspired‐by‐amdahls‐competition/

http://amdahlslaw.blogspot.com/2008/07/take-1000-out-of-my-pocket-for-thinking.html
http://www.chipdesignmag.com/martins/2008/08/04/inspired-by-amdahls-competition/


Virtual HW

The Problem Domain

• Simulating a computer 
system, any computer 
system

• Run the same binary 
code as the target 
system

• Multiple processors, 
multiple machines

• Execution speed the 
primary goal

12 Sep 2008SiCS Multicore Days 20083



Board

Chipset

The Problem Domain

• Defined, repeatable, and deterministic semantics
– The simulator provides more control than physical hardware

• Target hardware system is inherently parallel
• Naïve semantics:

– Clearly define the order of execution of units
– Interleave all simulation units on a cycle-by-cycle basis

12 Sep 2008SiCS Multicore Days 20084

Board

SoC

Core Core PCIe

Eth
RTOS

SW

MW RTC

PIC

RAM FLASH

CPU

Core Core UART

EthRTOS

SW

MW RTC

PIC

RAM

Disk
UART

USB

SATA

ROM

Board

Board controller

Core IO

Eth
RTOS

SW

MW RTC

PIC

RAM FLASH

UART

network



Rethink of Semantics Part 1

• Observations:
– Focus is on processors executing code
– Processors only rarely observes what other processors do
– Software is tolerant to timing variations
– Processors consume > 95% or simulation time
– Device models driven by processors

• Optimization:
– Make device models passive transaction-driven objects
– Device models complete their work in a single step
– Temporal Decoupling: run each processor for a long time 

in each step, do not switch on every cycle 

• Result: 
– Enhanced locality, greatly increased performance
– Works well with almost all software loads
– “Classic fast Simics”

12 Sep 2008SiCS Multicore Days 20085



Temporal Decoupling

12 Sep 2008SiCS Multicore Days 20086

Board

Chipset

Board

SoC

Core Core PCIe

Eth
RTOS

SW

MW RTC

PIC

RAM FLASH

CPU

Core Core UART

EthRTOS

SW

MW RTC

PIC

RAM

Disk
UART

USB

SATA

ROM

Board

SoC

Core IO

Eth
RTOS

SW

MW RTC

PIC

RAM FLASH

UART

network

Simulation progress, temporal decoupling

Core

Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core

Simulation progress, cycle‐by‐cycle interleave

Core Core Core Core Core Core Core Core Core Core Core Core Core Core



Temporal Decoupling Speed Impact

• Experimental data
– 4 virtual PPC440 boards
– Booting Linux 

• Which is a particularly 
hard workload, lots of 
device accesses

– Execution quanta of 1, 10, 
100, ... 1000_000 cycles

• Notable points:
– 10x performance increase 

from 10 to 1000 quantum
– +30% from 1000 to 

1000_000 quantum 

12 Sep 2008SiCS Multicore Days 20087



...But Still Sequential

• Deterministic and defined semantics paramount
– Same execution order and parallel interleave each time

• Analysis: synchronization so frequent it would 
negate any benefit from a parallel execution 
– 1000 to 10000 instructions for processors sharing memory
– Would mean a synchronization frequency of 100’s of KHz in 

host time

12 Sep 2008SiCS Multicore Days 20088

We considered the main problem to be 
speeding up simulation of tightly‐coupled 
shared‐memory or shared‐devices systems



The Target Domain Changes!

• The target systems that we encountered changed
– From single boards with single processors
– To multiple boards, each with one or more processors

12 Sep 2008SiCS Multicore Days 20089

• This changes the game
– Significant demands for simulation performance
– Each board physically quite separate from other boards
– Boards quite loosely coupled, compared to the coupling 

between hardware on the same board



A Fully Parallel Simulation Solution

• Put each board or machine on its own thread
– Use network links as the natural point to divide the 

simulation
– Take advantage of high latency of network links

• This has previously been done when using distributed 
simulation with Simics, which paved the way for parallel

• Use temporal decoupling within each thread
– Each board can contain multiple processors
– Shorter synchronization times than between boards
– Introduces a hierarchy of synchronization

• Requirements:
– Simulation results independent of host, # of host cores
– Run on a single processor defines the semantics

12 Sep 2008SiCS Multicore Days 200810



Semantic Requirements

VmWare IBM CECSim Serial Simics
Parallel 
Simics

Multiple machines on 
single host processor

Yes No Yes Yes

Multiple machines on 
SMP host

Yes No No Yes

SMP on SMP host Yes Yes No No

Host‐independent
execution semantics

No No Yes Yes

Repeatable execution No No Yes Yes

Reverse execution  No No Yes Yes

Checkpointing Yes No Yes Yes

Target architecture X86 zSeries
Power Archictecure, x86, MIPS, 
SPARC, ARM, C64, H8, MSP430, 

Alpha, IA64, ...

12 Sep 2008SiCS Multicore Days 200811



Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core

Simulation progress, cycle‐by‐cycle interleave

Parallel Execution

12 Sep 2008SiCS Multicore Days 200812

Board

Chipset

Board

SoC

Core Core PCIe

Eth
RTOS

SW

MW RTC

PIC

RAM FLASH

CPU

Core Core UART

EthRTOS

SW

MW RTC

PIC

RAM

Disk
UART

USB

SATA

ROM

Board

SoC

Core IO

Eth
RTOS

SW

MW RTC

PIC

RAM FLASH

UART

network

Simulation progress, parallel execution

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core

We need to synchronize the threads 
every once in a while, to maintain 
semantics: no more apart than they 
would be under sequential execution 

of the same system

Thread 1 Thread 2 Thread 3

Load balancing is a new limiter of 
simulation performnace, never an 

issue in a single‐threaded simulation



Impact on Simulation Models

• Simics infrastructure
– Several helper threads for a long time, thread safety was 

already present in many places
– Multiple active simulation threads required some changes to 

how simulation is controlled and inspected
– Scripting environment obviously affected

• Processors & Memories
– Provided by VT
– Thread-safe checks in the code
– Semantics not really affected, same as temporal decoupling

• Network links
– Only a few different types, mostly done by VT
– Passes data between simulation threads
– Only simulation unit straddling parallel execution units
– Have to be written with awareness of simulation semantics
– Existing distributed simulation support formed the basis

12 Sep 2008SiCS Multicore Days 200813



Impact on Simulation Models

• Device models
– The bulk of Simics models, written by VT, users, 3rd parties
– Semantics of simulation same as temporal decoupling
– Each device local to one thread, sees a sequential world
– Any device shared between several processors requires the 

simulation to run all these processors in the same thread
– Main work: ensure that code is thread-safe 

• Run in true concurrency with other Simics code 
• Run with other instances of the same model
• No data shared between instances
• Has to be validated model-by-model

• The fact that Simics already used temporal 
decoupling helped parallelization tremendously
– Parallel execution a “minor tweak” to temporal decoupling
– Many models already thread-safe without any changes
– Changes to models usually small

12 Sep 2008SiCS Multicore Days 200814



15

Hierarchical Synchronization

• Deterministic semantics
– Regardless of host # cores

• Periodic synchronization between 
different cells and target machines

– Puts a minimum latency on 
communication propagation

– Synch interval determines simulation 
results, not number of execution 
threads in Simics

• Latency within a cell:
– 1000-10000 cycles 
– Works well for SMP OS

• Latency between cells:
– 10 to 1000 ms
– Works well for latency-tolerant 

networks
• Builds on current Simics experience 

in temporally decoupled simulation
– Tried-and-tested, only executing 

faster on a multicore host

link

link

Synchronize shared 
memory machine tightly

Longer latency on 
network between cells

Short latency between 
machines with tight 

network coupling, inside 
a single cell



Achievable Parallelism

• Maximal model
– One thread per board
– Threads will be quite 

unbalanced, as boards 
have different load

– OS schedules threads on 
all processors on host

– Quick initial 
implementation to get off 
the ground

• Controlled model
– Only a few threads, with 

several boards each
– Simics balances the 

boards onto the threads
– Worker pool algorithm

• Strictly more powerful
– Share a multicore host 

between Simicses

12 Sep 2008SiCS Multicore Days 200816



17

Multithreading Performance Results

• Performance of Simics multithreading depends on
– Target system characteristics
– Software latency requirements
– Target system load balance
– Target system communications patterns

• Synthetic experiments and lab experience
– Single-thread performance not affected

• Simics works just as well as before on a single core
• No impact on idle loop simulation

– Up to 10x Simics 3.2 performance
• Threading revealed bottlenecks in Simics
• 8-core host, 64 target machines, no communication

– Up to 6x scaling on 8-core host
• Pretty respectable



Summary: Lessons

12 Sep 2008SiCS Multicore Days 200818

Rethink domain
• What looks stubbornly 

sequential might be parallel with 
minor semantic tweaks

• Know your use cases!

Device-local semantics
• Simplify user-provided code
• Essentially sequential
• ”Share nothing” = no locking
• Parallelism hidden in the 

framework

Host-independent 
semantics
• Result of execution independent 

on degree of parallelism
• Very important for Simics
• Generally useful for debug

Modular construction
• Roll out parallelism over time
• Immediate benefits 
• Test piece-by-piece
• A non-thread-safe module only 

affects simulations when used



Questions?


	Simics® Accelerator: �Creating a Parallel Program �out of a Serial Problem
	Overview
	The Problem Domain
	The Problem Domain
	Rethink of Semantics Part 1
	Temporal Decoupling
	Temporal Decoupling Speed Impact
	...But Still Sequential
	The Target Domain Changes!
	A Fully Parallel Simulation Solution
	Semantic Requirements
	Parallel Execution
	Impact on Simulation Models
	Impact on Simulation Models
	Hierarchical Synchronization
	Achievable Parallelism
	Multithreading Performance Results
	Summary: Lessons
	Questions?
	Backups: 
	Spares: Temporal Decoupling Effects on Software
	Locking Test Program
	Temporal Decoupling Affects Execution
	Locking Test Program: Find Race
	Repeatability and Reverse Debugging
	Single Point of Control
	Not Trivial to do Right
	Multithreading Simics: Overview
	Some Realism



