virtutech

-

Simics® Accelerator:

Creating a Parallel Program
out of a Serial Problem

Jakob Engblom, PhD
Technical Marketing Manager, Virtutech
jakob@virtutech.com

D virtutech

A

& We have what looks like a stubbornly sequential
problem that we need to make go faster

® Rethink and slightly redefine the problem domain
® Out comes a decently concurrent solution

: Embarrasingly Parallel
Stubbornly Sequential (Conveniently Concurrent) Decently Concurrent

* Programs and algorithms * Obvious and trivial * Problem domain offers
with hard-to-break parallelism parallelism
sequential behavior « Many independent « But not as parallel as the
» The best solution appears computations convenient problems
to be a sequential algorithm « “Embarrassing if you cannot « Each thread can be quite
» Ex: Shortest path make a scalable parallel different from other threads
solution” « Ex: Multiple independent
» Ex: Signal processing on programs, game engines
multiple streams, media (Al, physics, graphics, ...)

codecs, web servers, web
search, routing, packet
(scan

http://amdahlslaw.blogspot.com/2008/07/take-1000-out-of-my-pocket-for-thinking.html,
Qttp://www.chipdesignmag.com/martins/2008/08/04/inspired-bv-amdahls-competition/ j

2 SiCS Multicore Days 2008 12 Sep 2008

http://amdahlslaw.blogspot.com/2008/07/take-1000-out-of-my-pocket-for-thinking.html
http://www.chipdesignmag.com/martins/2008/08/04/inspired-by-amdahls-competition/

8 virtutech
P The Problem Domain

& Simulating a computer
system, any computer
system

® Run the same binary
code as the target
system

® Multiple processors,
multiple machines

® Execution speed the
primary goal

3 SiCS Multicore Days 2008 12 Sep 2008

8 virtutech

P The Problem Domain

& Defined, repeatable, and deterministic semantics
— The simulator provides more control than physical hardware

® Target hardware system is inherently parallel

® Naive semantics:
— Clearly define the order of execution of units
— Interleave all simulation units on a cycle-by-cycle basis

Board Board Board

SoC CPU Board controller -
Chipset
SW \ SW \ SW \

_ v

4 SiCS Multicore Days 2008 12 Sep 2008

D virtutech

S Rethink of Semantics Part 1

{ ® Observations:

— Focus is on processors executing code

— Processors only rarely observes what other processors do
— Software is tolerant to timing variations

— Processors consume > 95% or simulation time

— Device models driven by processors

® Optimization:
— Make device models passive transaction-driven objects
— Device models complete their work in a single step
— Temporal Decoupling: run each processor for a long time
in each step, do not switch on every cycle

® Result:
— Enhanced locality, greatly increased performance
— Works well with almost all software loads
— “Classic fast Simics”

_ v

5 SiCS Multicore Days 2008 12 Sep 2008

8 virtutech

P Temporal Decoupling

7
Simulation progress, cycle-by-cycle interleave

Simulation progress, temporal decoupling

_ v

6 SiCS Multicore Days 2008 12 Sep 2008

g

N
7

8 virtutech

P Temporal Decoupling Speed Impact

-

® Experimental data
— 4 virtual PPC440 boards
— Booting Linux

160 » Which is a particularly

Simulation speed vs Time quantum length

) hard workload, lots of
device accesses
— Execution quanta of 1, 10,
100, ... 1000 000 cycles

120
100
80 -

60

® Notable points:
— 10x performance increase
from 10 to 1000 quantum
TE ® am om amm o — +30% from 1000 to
1000_000 gquantum

40 |

20 A

_ v

7 SiCS Multicore Days 2008 12 Sep 2008

D virtutech

P ...But Still Sequential

& Deterministic and defined semantics paramount
— Same execution order and parallel interleave each time

———

We considered the main problem to be
speeding up simulation of tightly-coupled

shared-memory or shared-devices systems

® Analysis: synchronization so frequent it would

negate any benefit from a parallel execution

— 1000 to 10000 instructions for processors sharing memory

— Would mean a synchronization frequency of 100’s of KHz in
host time

\

v

8 SiCS Multicore Days 2008 12 Sep 2008

D virtutech

P The Target Domain Changes!

& The target systems that we encountered changed
— From single boards with single processors
— To multiple boards, each with one or more processors

#

"
»

® This changes the game
— Significant demands for simulation performance
— Each board physically quite separate from other boards

— Boards quite loosely coupled, compared to the coupling
between hardware on the same board

_ v

9 SiCS Multicore Days 2008 12 Sep 2008

D virtutech

- A Fully Parallel Simulation Solution

& Put each board or machine on its own thread
— Use network links as the natural point to divide the
simulation
— Take advantage of high latency of network links
* This has previously been done when using distributed
simulation with Simics, which paved the way for parallel

® Use temporal decoupling within each thread
— Each board can contain multiple processors
— Shorter synchronization times than between boards
— Introduces a hierarchy of synchronization

® Requirements:
— Simulation results independent of host, # of host cores
— Run on a single processor defines the semantics

\

v

10 SiCS Multicore Days 2008 12 Sep 2008

8 virtutech
S Semantic Requirements

Parallel
VmWare IBM CECSim Simics

Multiple machines on

: Yes No Yes Yes
single host processor
Multiple machines on
SMP host Yes No No Yes
SMP on SMP host Yes Yes No No
Host-ln.dependent. No NG
execution semantics

Repeatable execution No No

Reverse execution No No
Checkpointing Yes No

Power Archictecure, x86, MIPS,
Target architecture X86 zSeries SPARC, ARM, C64, H8, MSP430,

\ Alpha, IA64, ... J

11 SiCS Multicore Days 2008 12 Sep 2008

virtutech
S Parallel Execution

/ ~ N\ (- N\ ()
Board Board Board

CPU

_ J U J U y

Thread 1 Thread 2 Thread 3

N

7
Simulation progress, cycle-by-cycle interleave

Load balancing is a new limiter of
simulation performnace, never an
issue in a single-threaded simulation

We need to synchronize the threads
- u every once in a while, to maintain <
semantics: no more apart than they
would be under sequential execution
of the same system

N
7
\ Simulation progress, parallel executionj

12 SIiCS Multicore Days 2008 12 Sep 2008

—

Core | Core | Core HEEBNI|

ﬂ virtutech

>

Impact on Simulation Models

{ ® Simics infrastructure

— Several helper threads for a long time, thread safety was
already present in many places

— Multiple active simulation threads required some changes to
how simulation is controlled and inspected

— Scripting environment obviously affected

® Processors & Memories

— Provided by VT
— Thread-safe checks in the code
— Semantics not really affected, same as temporal decoupling

® Network links

— Only a few different types, mostly done by VT

— Passes data between simulation threads

— Only simulation unit straddling parallel execution units

— Have to be written with awareness of simulation semantics

— Existing distributed simulation support formed the basis j

13

SiCS Multicore Days 2008 12 Sep 2008

ﬂ virtutech

>

Impact on Simulation Models

a

\

Device models

— The bulk of Simics models, written by VT, users, 3" parties
— Semantics of simulation same as temporal decoupling
— Each device local to one thread, sees a sequential world
— Any device shared between several processors requires the
simulation to run all these processors in the same thread
— Main work: ensure that code is thread-safe
* Run in true concurrency with other Simics code
* Run with other instances of the same model
* No data shared between instances
» Has to be validated model-by-model

The fact that Simics already used temporal

decoupling helped parallelization tremendously
— Parallel execution a “minor tweak” to temporal decoupling
— Many models already thread-safe without any changes
— Changes to models usually small

v

14

SiCS Multicore Days 2008 12 Sep 2008

D virtutech
P4 Hierarchical Synchronization

{ Synchronize shared R :
[QJ nomory machine toptyy | DEtErministic semantics
= — Regardless of host # cores
® Periodic synchronization between
different cells and target machines
— Puts a minimum latency on
communication propagation
\ A Longerlatency on — Synch interval determines simulation
. network between cells results, not number of execution
lin threads in Simics
s ~N ¢ Latency within a cell:

— 1000-10000 cycles

— Works well for SMP OS

® Latency between cells:
— 10 to 1000 ms
— Works well for latency-tolerant

link # . S networks
L Builds on current Simics experience
- Shortlatency between i temporally decoupled simulation

machineswithtight | Trjad-and-tested, only executing
network coupling, inside

a single cell faster on a multicore host

_ v

15

ﬂ virtutech

K"j Achievable Parallelism
f ® Maximal model ® Controlled model
— One thread per board — Only a few threads, with
— Threads will be quite several boards each
unbalanced, as boards

— Simics balances the

have different load boards onto the threads
— OS schedules threads on — Worker pool algorithm

all processors on host « Strictly more powerful

— Quick initial — Share a multicore host

implementation to get off between Simicses
the ground

*][#]E DN
- | | [mw ==

-
|- \#\ L)

16 SiCS Multicore Days 2008 12 Sep 2008

D virtutech

- Multithreading Performance Results

(o Performance of Simics multithreading depends on
— Target system characteristics
— Software latency requirements
— Target system load balance
— Target system communications patterns

® Synthetic experiments and lab experience
— Single-thread performance not affected
» Simics works just as well as before on a single core
* No impact on idle loop simulation

— Up to 10x Simics 3.2 performance
* Threading revealed bottlenecks in Simics
» 8-core host, 64 target machines, no communication

— Up to 6x scaling on 8-core host
* Pretty respectable

17

D virtutech
<
[

Rethink domain

* What looks stubbornly
sequential might be parallel with
minor semantic tweaks

* Know your use cases!

Host-independent
semantics

» Result of execution independent
on degree of parallelism

« Very important for Simics
» Generally useful for debug

\

Summary: Lessons

Device-local semantics

« Simplify user-provided code
» Essentially sequential
« "Share nothing” = no locking

» Parallelism hidden in the
framework

Modular construction

 Roll out parallelism over time

* Immediate benefits

» Test piece-by-piece

* A non-thread-safe module only
affects simulations when used

J

18 SiCS Multicore Days 2008

12 Sep 2008

D virtutech

-

Questions?

	Simics® Accelerator: �Creating a Parallel Program �out of a Serial Problem
	Overview
	The Problem Domain
	The Problem Domain
	Rethink of Semantics Part 1
	Temporal Decoupling
	Temporal Decoupling Speed Impact
	...But Still Sequential
	The Target Domain Changes!
	A Fully Parallel Simulation Solution
	Semantic Requirements
	Parallel Execution
	Impact on Simulation Models
	Impact on Simulation Models
	Hierarchical Synchronization
	Achievable Parallelism
	Multithreading Performance Results
	Summary: Lessons
	Questions?
	Backups:
	Spares: Temporal Decoupling Effects on Software
	Locking Test Program
	Temporal Decoupling Affects Execution
	Locking Test Program: Find Race
	Repeatability and Reverse Debugging
	Single Point of Control
	Not Trivial to do Right
	Multithreading Simics: Overview
	Some Realism

