
Virtual to the (Near) End –
Using Virtual Platforms for Continuous Integration

Jakob Engblom
Wind River

Torshavnsgatan 27
16440 KISTA, Sweden

jakob.engblom@windriver.com

ABSTRACT
Continuous integration (CI) is a hot topic in software
development today. CI is a critical enabler for Agile methods and
higher software development velocity and productivity. However,
adopting the practice of Continuous Integration can be difficult,
especially when developing software for embedded systems.
Practices such as Agile and Continuous Integration are designed
to enable engineers to constantly improve and update their
products. However, these processes can break down without
access to the target system, a way to collaborate with other teams
and team members, and the ability to automate tests. This paper
outlines how simulation can enable teams to more effectively
manage their integration and test practice, using virtual platforms
as a key part of the test setup and simulation as a key part of the
test strategy.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]; I.6.3 [Simulation Output
Analysis];

General Terms
ECONOMICS, RELIABILITY, VERIFICATION

Keywords
Virtual platform, simulation, simulated hardware, transaction-
level simulation, TLM, Continuous integration, Agile, simulator
integration

1. INTRODUCTION
Continuous integration (CI) is an important component of modern
Agile software engineering practice [8]. While the details of CI
differ depending on whom you ask, a key part is that rather than
waiting until the last minute to integrate all the many different
pieces of code in a system, integration and most importantly
integration testing is performed as early as possible, as soon as
code is ready to run. You cannot really do Agile software
development fully unless you have automated builds, automated
tests, and automated successive integration – continuous

integration. Embedded software developers are actively
embracing Agile practices, but are often blocked from doing it
fully due to the issues inherent in working with embedded
hardware.

A properly implemented and employed CI system shortens the
lead time from coding to deployed products, and increases the
overall quality of the code and the system being shipped. With CI,
errors are found faster which leads to lower cost for fixing the
errors, and less risk of showstopper integration issues when it is
time to ship the product. In CI, each piece of code added to a
system should be tested as soon as possible and as quickly as
possible, to make sure that feedback reaches the developers while
the new code is still fresh in their mind. The most common
technique is to build and test as part of the check-in cycle for all
code, which puts access to test systems on the critical path for
developers.

Testing soon and testing quickly is logistically simple for IT
applications where any standard computer or cloud computing
instance can be used for testing. However, for embedded systems
and distributed systems, it can be very difficult to do continuous
integration and quick automated testing. The problem is that
running code on an embedded system typically requires a
particular type of board or even multiple boards. If multiple
boards are involved, they need to be connected in the correct way,
and the connections between them configured appropriately.
There is also a need for some kind of environment – an embedded
system rarely operates in isolation, it is rather a system that is
deeply embedded in its environment, and depends on having the
environment in order to do anything useful. Thus, CI for
embedded systems tends to be more difficult to achieve, due to
the dependency on particular hardware the dependence on
external inputs and outputs.

Using simulation for the computer as well as the environment
portion of the embedded system offers a potential solution that
allows for true automated and continuous integration even for
embedded software developers. In our experience, we can achieve
this by using high-speed transaction-level (TLM) virtual
platforms (VP), along with models of networks, and simulators
for the physical world that the embedded system interacts with.

Using VPs for this application means that VPs will be used
throughout the product life cycle – it is virtual all the way from
the first design simulations to the final test, shipping, and post-
delivery maintenance of the system. It is virtual from start to end,
with physical hardware used alongside the virtual systems for
testing, once hardware is available.

2. CONTINUOUS INTEGRATION
A continuous integration setup is fundamentally an automatic test
framework, where code is successively integrated into larger and
larger subsystems. As shown in Figure 1, the CI setup typically
consists of a number of CI loops, each loop including a larger and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

DAC '15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06…$15.00
http://dx.doi.org/10.1145/2744769.2747948

larger subset of the system – both in terms of hardware and
software. Each CI loop implies integration more of the system
software, and running tests that cover a larger part of the system.

Build system

Developer writes
new code

CI Loop 1: Unit test

CI Loop 2: Subsystem-level test

CI Loop 3: System-level test

Good to Deliver

Pre-CI Test

CI Loop 4: Large system-level test

Suitable for
simulation-
based testing

Figure 1: Continuous Integration Concept

The CI system is typically started when the code is checked in by
developers. Since code needs to have some basic level of quality
before being checked into a development branch or trunk, there is
normally a separate pre-CI test phase where developers test their
code manually or informally to make sure it is basically sound.
Once the code seems to work, it is checked in, and automatically
submitted to the build system and the CI system.

It is critical to perform testing at multiple levels of integration,
since each level tends to catch different types of bugs [3][5][9].
Just doing system-level end-to-end testing on a completely
integrated system will miss large classes of errors that are easy to
find with more fine-grained tests. Running unit tests are necessary
to ensure system-level quality, but not sufficient. Integration
testing will reveal many types of issues that are not found in unit
tests.

Each successive CI loop covers a larger scope and takes more
time to run. The first-level loops should ideally complete in a few
minutes, to provide very quick developer feedback. At the tail of
the process, the largest loops can run for days or even weeks,
essentially being the final testing before delivery.

In our experience, simulation can be used for all but the last and
largest test loops. In the end, you have to test what you ship and
ship what you test, and that means that you have to test the system
on the hardware that will be shipping. However – that is the last
thing that happens before release, and most testing up to that point
can be done using simulation.

It is important to note that CI cannot necessarily be applied to any
arbitrary existing software stack – in most cases that we have
seen, the software architecture has had to be changed to facilitate
CI and Agile practices. A key requirement for success is that it is
possible to build and integrate parts of a system, as well as
ensuring that subsets of the entire system can be tested in
isolation. Unit tests and subsystem tests have to be defined, if
they do not already exist. Automated testing using simulation can
be achieved for almost any system, but continuous integration

means more than that. It is a higher level of testing and integration
sophistication.

3. HARDWARE-BASED CI
The standard way to do testing and CI for embedded systems is to
use hardware. Since you have to at some point test on hardware, a
hardware setup is essentially mandatory. However, it is often
difficult to set up. As shown in Figure 2, a hardware test setup
often consists of a board under test, a master PC that loads
software onto the board and runs it, and a test data PC equipped
with interfaces such as AFDX, ARINC 429, MIL-STD-1553,
CAN, Ethernet, FlexRay, and other buses and networks used to
communicate with the real target board.

To test the embedded software on the system under test, it is
necessary to have input data to communicate to the target. That is
the job of the test data PC in Figure 2. The input data can come
from recordings of real-world inputs, from manually written files
of input data, or from models that run in real-time. While the test
data generator is shown as a PC in Figure 2, it can also be
specialized test hardware, in particular for high-performance
systems where the data volumes needed are huge and latency
requirements are tight.

Lab test rig

bus, network, …

Data generator
or world model

Target provisioning
and control

JTAG, serial,
Ethernet, flash
programmer, …

System
under
test

Test manager
Build server

Figure 2: Hardware Test Rig

The master PC is responsible for managing the target system,
including loading software on it, resetting it, and starting target
software. The PCs directly connected to the target system are
often managed by some central testing system.

Hardware test setups are necessary for doing tests on the
hardware, and are universally used for at least final integration
testing. However, access to hardware test setups is typically
limited since there are not that many setups to go around.
Furthermore, they can be difficult to automate and configure
quickly enough for small CI loops. In practice, hardware can be
so difficult to set up, control, and fully automate that many
companies have given up on using it for CI entirely. Instead,
testing on hardware is done only quite late in the process using a
mostly complete system, essentially going straight to the largest
CI loop without using the smaller ones. This brings with it the
well-known effect that defects are expensive to fix, since they are
found late in the process.

To work around the inconvenience and lack of access to
hardware, companies have tried various solutions. Unit testing on
can be performed on development boards using the same
architecture as the target board, as long as tests do not depend on

accessing application-specific hardware. Stubs can be used to
imitate the rest of the systems. This gets around the need to have
real target boards, but at the cost that it is not really running the
final integrated software stack. Once it is time to do integration
tests, the actual target hardware is needed.

Another common solution is to develop an API-based or shim-
layer-based simulator. In such a setup, the software is compiled to
run on a Windows- or Linux-based PC, and the target hardware
and operating system is represented by a set of API calls that can
be used on both the target and the host. This provides an
environment where application code can run, but it will not be
compiled with the real target compiler, it will not be integrated in
the same way that software is for the real system, and it will not
run the real operating system kernel. They are most useful for pre-
CI testing, in practice.

In summary, hardware solutions are sufficiently difficult to use
and integrate that they prevent a continuous integration flow that
is as smooth and efficient as that experienced by general IT
companies.

4. VIRTUAL PLATFORM-BASED CI
To get around the problems caused by hardware, companies have
turned to using virtual platforms to run the code. Testing can be
performed using standard PCs and servers, reducing the reliance
on hardware and expanding the access to hardware virtually. The
setups look like that illustrated in Figure 3. The PCs servicing and
controlling the target board are replaced with simulation modules.
The target board is replaced with a virtual platform.

The target software running on the simulated hardware boards
will have to include not only low-level firmware and boot loaders,
but also hypervisors, operating systems, drivers, middleware, and
applications. To achieve this, you need a fast model of the full
target hardware system, and the only way to achieve this is to use
a TLM model of the target system, such as Simics [1], SystemC
TLM-2 [2], and Qemu.

Simulated lab test rig

bus, network, …

Back-door
or network

Virtual platform
for System under
test

Test manager
Build server

Data generator
or world model,
implemented in
simulation

Simulation tool
to set up target
system
software

Figure 3: Virtual Platform Test Rig

It is important to note that a virtual platform model does not have
to correspond to the complete physical hardware system to be
useful. Rather, the most common way to enable CI using
simulation is to create a set of virtual platform configurations that
are useful for particular classes of test cases, and that do not
necessarily all include the entirety of the hardware system. If
some piece of hardware is not actually being used for a particular
test case, it can be skipped or replaced by a dummy in the model,
reducing the work needed to build the model and the execution

power needed to run it. A simulation setup must always be
designed with the use case in mind.

Figure 3 includes the simulation of the environment on the right-
hand side. This is a very important aspect of embedded systems
testing. The specific environment differs from system to system;
for a mobile phone or base station, the environment is a cellular
network. For an automotive control system, it could be a hybrid
drive train. For a satellite, it could be the position of the earth,
sun, and stars, alongside traffic from mission control. Regardless
of the details, the environment needs to be brought into the CI
system at some point and in some way. Figure 4 shows how a
virtual platform is typically integrated with other simulators to
build a complete system simulation that covers far more than just
the computer hardware under test.

Complete Simulation System

Simulation of the World in Which
the System OperatesSystem Being Designed

Virtual platform:
Simulation of the Control Computer

Simulation of the System Mechanics,
Electronics, Physics, etc.

Control Application

Control Computer

Target OS

DAC/GPIO/…

ADC/GPIO/…

Actuator
Simulation

Sensor
Simulation

Figure 4: Simulation Integration

A complete simulation system might not be needed for unit tests,
but even for such tests it is recommended to use the real IO paths
as used in the integrated stack, rather than trying to push data into
the target software directly. The fewer variants of software that
you need to build and maintain, the better. Instead, the simulation
of the world might be replaced by inputs from a file.

We have also seen cases where the simulation of the rest of the
world was actually run on a virtual platform. In such a setup, you
have multiple virtual platforms inside the same simulation
session, with one running the real-world code under test, and the
other running a simulation of the environment. Such a setup
directly mirrors a real-world setup that involves multiple
computer systems, allowing reuse of test cases.

Simics

Test
inputs

Real HW

Simulation

Test
results

Test manager

Figure 5: Simulation and Real Hardware Tests

It should be noted that we are building a system for executing
tests and collecting test outputs – not for generating the test cases
themselves. As shown in Figure 5, simulation is used alongside
hardware, running the same tests as are run on the hardware – but
running them in a more convenient way and in greater volume.
This reuses existing assets in terms of test designs and test scripts,
increasing flexibility and ensuring consistency and test validity.
Since the simulator is just a software program (or several, in the

case that multiple separate simulation environments are used
together) with no hardware dependencies, many instances can be
run in parallel using a batch processing, cluster, grid, or cloud
systems. This can be used to speed up testing considerably. By
using simulation, more tests can be run, making it possible to find
more errors in testing and have fewer escape to the released
software. With more test bandwidth available, more aspects of the
product can be tested, increasing overall quality.

In addition to running the tests that are used with the hardware, it
is highly recommended to extend the testing with tests specific to
simulation, as discussed in more detail below.

The use of virtual platforms to support continuous integration
considerably broadens their applicability in terms of the product
life cycle. If we look at the PLC stages shown in Figure 6,
continuous integration is applicable from platform development
all the way to deployment and maintenance. This contrasts with
the more common way to view virtual platforms as a way to shift
the development cycle to the left by enabling earlier software
development.

Continuous Integration

Design Platform
Development

Application
Development

Test &
Integration

Deploy &
Maintain

Product
Timeline

Figure 6: Product Life Cycle

When using virtual platforms and simulation for integration
testing, the virtual platform setup is useful even after the final
integrated system has shipped. As new software is developed for
existing hardware, it has to be integrated and tested, and virtual
platforms in a CI system has a key role to play there. Software is
continuously evolving, and CI needs to be done continuously.

Of course, as discussed above, once the system gets to
deployment, testing will have been done on hardware as well. But
the virtual platform is still there, helping to the end and beyond as
the system is maintained, extended and upgraded.

5. CHALLENGES ADDRESSED BY
INTEGRATED SIMULATION
By using a virtual platform and integrated simulators to do CI, we
solve a number of problems that typically affect hardware-based
setups.

Hardware Availability Bottlenecks

When working with physical labs, hardware availability is almost
always an issue. The number of physical systems available is
limited, and time on them rationed in some way. With a simulated
setup, hardware availability is not an issue, since the simulator
can make any computer simulate any embedded board. The
simulator augments the availability of physical boards, removing
the constraints that hardware availability puts on both developer
spontaneous testing and CI testing.

Using virtual platforms and simulators, each user can have a
system of any particular kind to run on whenever they need it. It
is also possible to temporarily increase the testing pool by
borrowing computer resources from other groups within the same
company, or even renting time on a cloud computing service.

Hardware Asset Inflexibility

With a simulation, the same physical hardware box – a generic
PC or server - can be used to run software for a wide variety of
embedded systems. This provides much more flexibility than
hardware labs, since one hardware system cannot be repurposed
to test software build for another system.

Hardware Control

Compared to hardware, managing a simulated test system is much
easier. As the simulation is just software, it will not run out of
control, hang, or become unresponsive due to a bad hardware
configuration or total target software failure.

It is also easier to manage multiple software programs than
multiple hardware units. Where a physical test system will need to
coordinate multiple pieces of hardware and software as shown in
Figure 2, a simulation-based setup as shown in Figure 3 has the
much simpler task of coordinating a few software programs.

Test Run Latency

When hardware is the bottleneck for testing, it is common to see
test campaigns becoming longer and longer as more tests are
added when more software is integrated. The time from the point
that a job is submitted for execution to the point that it is
completed gets longer and longer, as it has to wait for a hardware
unit to become available. With a simulation-based setup, much
more (virtual) hardware is available for the quick tests, and this
leads to shorter test latency.

Test latency is also reduced by parallel testing, making it possible
to run through a particular set of tests in shorter time than on
hardware. We have seen users previously limited by hardware
greatly increase their test coverage and frequency thanks to
parallel testing – if you can run your test suites daily rather than
weekly, errors will get found earlier, regressions will be caught
quicker, and fewer errors will make it out in the field, reducing
development costs and increasing product quality.

Test Design Reflecting the Hardware

When limited by hardware availability, real-world tests are often
designed to fit into available testing resources rather than to
optimally detect problems. This is a practical necessity, as some
testing is still infinitely better than no testing. However, with
virtually unlimited hardware availability, this is no longer as
much of an issue. Tests do not have to be scaled down or
modified to match available hardware; instead, the virtual
hardware can be set up to match the tests that need to be
performed.

For example, we have seen real systems with no connectors
available for testing – no serial, JTAG, or utility Ethernet at all. In
such a situation development board have to be used for automatic
basic testing, and only rare final system tests are painstakingly
carried out on the real hardware. With a simulation of the board, a
virtual back door can be used to inject software and test the real
software.

Limited Configuration Space

In a hardware lab, there is normally a single or a few different
hardware configurations available for testing. These might not
represent all the different configurations actually found in the real
world, but rather a compromise between expense and breadth of
testing. With a simulation, there is no need to limit the
configurations available, since there is an infinite pool of boards
available. It is very easy to create and save and reuse

configurations, since they are all just software configurations and
setup scripts.

One particular example where configuration richness is important
is testing software that runs on multiple different platforms.
Ideally, we want to test that software on all target platforms for
every change – which multiplies the number of hardware test rigs
needed. In simulation, it is very easy to continuously and quickly
test software changes across all platforms, even at the unit-test
and subsystem-test level.

Hardware Compromises

Another aspect of hardware availability that affects test design is
the common use of development boards rather than production
boards. With a simulation, a model of the real board can be
employed, removing the need for a variant build for the
development board. This makes the testing have higher fidelity,
and saves the cost to maintain an extra build variant to support
testing. It means the software is the real thing, which smoothens
the path towards continuous delivery.

Partial System Integration Issues

It is often desirable to integrate some subsystem or other part of a
larger system for deep testing, without having to integrate it with
the whole system. Indeed, when working with hardware in
development, the rest of the system might well not exist at all.
Such partial integration is much easier to do using a virtual
platform and simulation, since it is simple to capture the
interaction between the subsystem under test and the rest of the
system, and to inject information that convinces the subsystem
under test that the rest of the world is there.

Such stubbing is often more difficult to perform in hardware, as
the interfaces to be intercepted can be difficult to get at. In some
cases, it is easy, as for a CAN bus, but for a wireless
communications system, stubbing things is much harder. Stubbing
a rack back plane is also hard in hardware. When it gets down to
components on a board, hardware stubbing is pretty much
impossible today.

Very Large Setups

There are cases where hardware is just impossible to manage
when scaling towards the theoretical limits of a system. For
example, in Internet-of-Things (IoT) sensor systems as well as in
servers [11], you often need to have hundreds or even thousands
of nodes in a single system to test the software and system
behavior. In a simulated setting, it is possible to automatically
create very large setups without having to spend the incredible
amount of time it would take to set up, maintain, and reconfigure
such a system in hardware form. Even when hardware is very
cheap, configuring and deploying hundreds of separate hardware
units is expensive.

Another example would be testing software for hardware that is in
development or in prototype state - such hardware is usually very
limited in quantity and getting tens or hundreds of nodes for
testing networked systems and distributed systems just isn’t
possible.

Testing Fault Situations

The code that handles faults and erroneous conditions in a system
can be very difficult to test on hardware [4], and yet it is critical
to ensuring system reliability and resiliency. Hardware test rigs
tend to be expensive, and testing is often destructive, which limits
fault injection testing on hardware to fairly rare cases.

In contrast, in a simulator, injecting faults is very easy since any
part of the state can be accessed and changed. Thus, systematic,
automatic, and reproducible testing of hardware fault handlers and
system error recovery mechanisms can be made part of the CI
testing. This will ensure that fault handling remains functional
over time, and increase system quality. Often, the fault and error
handling code in a system is the least tested and a constant source
of issues [7]. Using simulation and injected faults, such code can
be tested to a much higher extent than is possible using hardware.

Testing System Changes

In a simulator, it possible to change the system as it runs. Not just
injecting events (like in fault situation testing), but also adding
new hardware, removing hardware, or reconfiguring the
connection between hardware units. In hardware, doing this either
requires manual intervention or some form of robot physically
altering the system. It is not impossible, but certainly very
difficult. In a simulator that supports dynamic reconfiguration,
this is very easy to do and automate.

A concrete example is inserting and removing boards from a rack.
With a simulator, it is possible to automatically test that a system
automatically configures and boots a newly inserted board.
Another example is pulling a board and checking that the system
detects that the board is removed and rebalances the software load
to the new system configuration. In the context of CI, this makes
it possible to test that the platform and middleware performs as
designed, when integrated with the hardware and each other.

Introducing Environmental Changes

It is also very valuable to introduce varying environmental
conditions as part of continuous integration and testing. In the
end, an embedded system is integrated into the world, and that
integration needs to be tested. We are not talking about “faults”,
really, but rather behavior that is expected from an uncooperative
physical world. Testing how a system responds to various
environmental conditions is a very valuable use case for
simulation – and one where simulation is being used extensively
for physical systems already.

For example, for a wireless network system, we want to test the
integrated software behavior in the presence of weak signals and
asymmetric reachability. Such testing is very easy to perform
using a model of the network, but very difficult to perform in the
real world.

Feedback to Developers

Using virtual platform checkpoints [6], it is possible to save
intermediate points in the test setup flow, such as the point where
a system has been booted and after software has been loaded.
Figure 7 shows a typical workflow where the system to use for
tests is first booted, the booted state is saved, and used as the
starting point for loading software. Since checkpoints should be
handled as read-only, it is possible to base many runs off of the
same checkpoint. Once software is loaded onto the system,
another checkpoint is saved, and this checkpoint is used as the
starting point for a series of tests.

On a hardware system, each test would have to start by booting
the system or cleaning it in some way to remove the effects of
previous tests. In a simulator, each run can start from a known
good state, with no pollution from other tests. Checkpoints can
save a lot of time in running tests by removing this overhead.

We have also seen customers use checkpoints to manage the
setups used for testing in a more proactive way. For example, by

creating a checkpoint of each nightly build of the basic software
platform, all developers and all tests run on a particular day will
start from a known and well-defined state, rather than relying on
whatever software happens to be loaded on the target systems
from the previous day.

Boot and setup

Test A

A
Load

software

Test B

Test Q

D
Developer

C

Q
Stimuli

recording

Issue
reporting

system

Q
Stimuli

recording

A: Saved checkpoint of
system ready to accept
code for testing

C: Saved
checkpoint of
system ready to
run tests

Developer submits
code to be tested

Tests run automatically in
parallel on a set of servers

If issues are found in
testing, a collaboration
checkpoint is passed back
to the developer for
immediate diagnosis

Load
software C’

Figure 7: Workflow Optimizations with Checkpoints

Figure 7 also shows how checkpoints are used to manage issue
reports from testing. In addition to the classical information in an
issue report (text describing what happened, collections of logs
and serial port output, version and configuration data, etc.),
checkpoints (containing a recording of all asynchronous inputs)
can be used to provide the developer with the precise hardware
and software state at the time that the issue hit. This removes the
guesswork in understanding what the test did and how the
software failed, and is a tremendous boost for debugging
efficiency.

The checkpointing methodology works with external simulators
or data generators, by simply recording the interaction between
Simics and the external simulator. When reproducing the issue,
the data exchange is simply replayed, without the need for the
external simulator or data source. Such record-replay debugging
is a very powerful paradigm for dealing with issues that appear in
complex real-time and distributed systems with many things
happening at once. A recorded debug session can also be used to
drive a reverse execution system and reverse debugger, such as
Simics [1]. Once a recorded session has been replayed, it is easy
to reverse within it, allowing reverse debugging to be used with
an integrated simulation.

6. REAL-WORLD USAGE
This paper is based on many real-world customer applications of
simulation technology, and we integrated lessons learnt in the
above text.

In general, the first benefit that is realized by using virtual
platforms and simulation for testing is that hardware availability
constraints are removed. This makes it possible to shorten the lead
time for tests and for all developers to have access to test
platforms [10]. The second step is to automate testing using the
virtual platforms as the execution engine – and the logical
conclusion to the automation process is the implementation of a
full CI system using both virtual platforms and hardware.

Once automatic testing is in place, test parallelization is the next
step. In this step, the latency for running batteries of tests is

reduced, sometimes radically. In particular, by making test
batteries complete faster, they can be brought from weekly to
daily, and from daily to hourly, shortening feedback loops and
increasing product quality.

Final testing before release is always performed using hardware,
and so are certification tests. A virtual platform no matter how
good does not contain all the details needed to reflect real-world
hardware stability.

Virtual platform use in testing does not end when a product is
shipped. The software load in the product will be maintained and
updated over time, and the new software will need to be tested on
the “old” hardware. Indeed, as the hardware gets older, the virtual
platform might be the only choice for volume testing, as lab
hardware availability shrinks due to breakage or culling of lab
systems.

The platforms targeted for testing using virtual platforms have
ranged from single boards to a few boards to racks of many tens
of boards and hundreds of processors.

7. SUMMARY
Continuous integration (CI) is an important part of modern
software engineering practice. By using CI, companies achieve
higher quality and enable continuous deployment, among other
benefits. However, implementing CI for embedded systems can
be a real challenge due to the dependency on particular
processors, particular hardware, and particular environments.
Using simulation for the environment and virtual platforms for the
computer component, it is possible to enable CI for systems that
seem “impossible” to automate in the physical world.

Virtual platforms can also bring other benefits, such as better
feedback loops to developers for issues discovered in testing, and
expansion of testing to handle faults and difficult-to-setup or
difficult-to-afford configurations.

8. REFERENCES
[1] Aarno, D, and Engblom, J. Software and System Development using

Virtual Platforms - Full-System Simulation with Wind River Simics,
Morgan Kaufmann Publishers, 2014.

[2] Aynsley, J. OSCI TLM-2.0 Language Reference Manual. Open
SystemC Initiative (OSCI), 2009.

[3] Bland, M. “Finding More than One Worm in the Apple”,
Communications of the ACM, Volume 57, Number 7, July 2014.

[4] Chessin, S. “Injecting Errors for Fun and Profit”, Communications of
the ACM, Volume 53, Issue 9, September 2010.

[5] Eldh, S. On Test Design, Doctoral Dissertation #105, Mälardalens
Högskola, Västerås, October 2011.

[6] Engblom, J. “Transporting Bugs with Checkpoints,” Proceedings of
the System, Software, SoC and Silicon Debug Conference (S4D
2010), Southampton, UK, September 15-16, 2010.

[7] Ganssle, J. The Firmware Handbook, Newnes, 2004.

[8] Girard, A. Agile and DevOps for Embedded Systems – Engineering
Trends Analysis, VDC Research, 2014.

[9] Koerner, S., Kohler, A., Babinsky, J., Pape, H., Eickhoff, F., Kriese,
S., Elfering, H. “IBM System Z10 Firmware Simulation”, IBM
Journal of Research and Development, Volume 52, Number 3, Paper
12, 2009.

[10] Magnusson. P. “The Virtual Test Lab”, IEEE Computer, May 2005.

[11] Rechistov, G. “Simics on the shared computing clusters: the practical
experience of integration and scalability”, Intel Technology Journal,
Volume 17, Issue 2, 2013.

