
Debugging Real-Time Multiprocessor Systems
Class #249/269, Embedded Systems Conference, Silicon Valley 2007

Jakob Engblom

Virtutech
Norrtullsgatan 15

SE-113 27 Stockholm
Sweden

e-mail: jakob.engblom@virtutech.com

Technology trends are causing a paradigm shift in how computer systems are designed:
Instead of steadily getting faster single processors, the entire semiconductor industry is
turning to multiprocessor designs to improve performance. Future real-time and embedded
systems will be using multiple-processor hardware, and the software is expected to adapt to
the situation. Writing parallel software programs is known to be very difficult and fraught
with unexpected problems, and now parallel programming is expected to go mainstream.

This class will discuss how to debug parallel software running on top of multiprocessor
hardware, and the types of errors that occur due to parallelism. A range of techniques and
tools are covered and the goal is to prime real-time and embedded software developers for
multiprocessor integration and debugging.

1 Introduction
Since the early 1980s, embedded software developers have been taking advantage of the steady progress of
processor performance. New processors were steadily being made available that increased the performance of
a system just by dropping in a new processor without needing much change in the software. If you used a 500
MHz processor last year, you could buy a 1000 MHz processor next year. Software designers implemented
applications that were intentionally too heavy for the current hardware, expecting faster processors to be
available when the product hit the market.

This comfortable state was driven by the steady progress of the semiconductor industry that kept packing
more transistors into smaller packages at higher clock frequencies, enabling performance to increase by both
architectural innovations like more parallel pipelines, by adding resources like on-chip caches and memory
controllers, and by increasing the clock frequency. All the while maintaining software compatibility with
previous generations of processors.

The 32-bit PowerPC family offers a typical case study on this progression. Starting with a 603 processor,
users have been able to upgrade with full application-software compatibility to the “G3”/750 processor series
(rising from 166 to 1100 MHz over time). Next came the “G4”/7400 series, and then the 64-bit “G5”/970
series, providing software engineers a performance increase in a single processor.

However, in 2004, single-processor performance increases began slowing considerably. Due to a number of
chip design and manufacturing issues, the clock-frequency increase has almost stopped, and we cannot expect
dramatic increases in performance of single processors any more. Instead, the semiconductor industry has
turned to parallelism to increase performance [1][2]. Using multiple processor cores (known as a multicore)
on the same chip, the theoretical performance per chip can increase dramatically, even if the performance per
core is only improving slowly. Also, the power efficiency of a multicore implementation is much better than
traditional single-core implementations, which is a factor as important as absolute performance [3]. Basically,
two cores at half frequency use half as much power as one full-speed core.

Consequently, every high-performance processor family in the embedded world and outside is moving to
multiprocessor designs. PMC-Sierra has been selling dual-core RM9200 MIPS64 processors for some time. In
2005 and 2006, a flood of single-chip multiprocessors have been launched, including Cavium’s 16-way
MIPS64-based processors, PA Semi’s 8-way PowerPC PA6T, ARM’s 4-way MPCore, and Freescale´s 4-way
PPC8574. Parallel machines are here in force and are the only choice for designing the highest-performing
embedded systems.

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

Networketc.

Timer Serial

One shared memory space

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

etc.Network

Timer Serial

Network with local memory in each node
As illustrated above, we can in general expect future embedded systems to contain several shared-memory
multiprocessor nodes, connected using one or more networks. The nodes can be located on the same or
different boards as other nodes, depending on the hardware design.

The move to parallel hardware, however, creates problems for software developers. Applications that have
traditionally used single processors will now have to be parallelized over multiple processors in order to take
advantage of the multiple cores. Programs that used to run on single processors will have to run on
multiprocessors. Apart from the act of creating parallel software, debugging is greatly complicated by the
combination of parallel execution and tighter packaging [5][6].

Note that parallel processing is not really new to embedded systems. Many embedded applications have been
using parallel processing with great success for a long time. For example, signal-processing in
telecommunications makes use of arrays of digital signal processors (DSPs) to handle wireless and wired
signals. Routers use multiple input and output ports with multiple traffic engines to scale to extreme traffic
volumes. Automotive applications use large numbers of small processors spread throughout a vehicle. Control
applications are distributed across multiple processor cards. Mobile phones contain a multitude of processors.
All of these applications have been in domains where parallelism has been relatively easy to handle. The
computations to be performed naturally divide into independent tasks and are “embarrassingly parallel”
[9][10]. For example, in a mobile phone the user interface can run in parallel to the radio interface, and a
mobile phone base station has one thread (or more) per active mobile terminal. Such parallel computation is
easier to understand and design than general shared-memory processing [5].

Thus, moving to shared-memory parallelism within individual processing nodes will be the greatest challenge
to the embedded software industry for a very long time. Tools, methodology and design thinking need to
change. The force of this change is comparable to the introduction of multitasking operating systems, virtual
memory and object-oriented programming.

Seymour Cray says, “If you were plowing a field, which would you rather use: two strong oxen or 1,024
chickens?” It seems that we are forced to start harnessing these chickens, since there are no oxen available…

1.1 Terminology
Some terminology before we get started on the technical details.

 Multitasking means that a single processor is used to run several different software tasks at the same
time, basically time-sharing a single processor as scheduled by a (real-time) operating system.

 A multiprocessor (MP) is any computer system using more than one processor.

 SMP, shared-memory or symmetric multiprocessing, is a design where the processors in a
multiprocessor use the same memory, can access the same data, and run the same tasks. In contrast, an
asymmetric multiprocessor (AMP) gives each processor its own local memory.

 Homogeneous MP means that all processors are of the same type, while heterogeneous MP uses
processors of several different types (for example, and ARM and a DSP). Most SMP designs are
homogeneous, while most AMP designs are heterogeneous.

 A multicore processor is a single chip containing multiple processor cores. Essentially, it is a
multiprocessor on a single chip. Arguably, the first multicore design was the TI C80 from 1995.

 Manycore is a term becoming popular for processors with more than about ten cores on a single chip. It
is pertinent since multiprocessor systems featuring tens or hundreds of cores have some unique issues
compared to current multicore processors featuring two or four cores. The line between multicore and
manycore is not absolutely clear, but the distinction makes eminent sense.

 Multithreading (MT) is a technique where a single processor pipeline supports several parallel threads
of computation. It is a relatively efficient way to increase the utilization of the execution resources of a
core. Most MT designs are used to create small SMPs, but it can also be used in AMP mode [7].

In the rest of this paper, we will use the term “multiprocessor” to denote any kind of system with more than
one processing thread in hardware.

On the software side, we prefer to use the generic term “task” to mean a single thread of computation. We
want to avoid confusion between “process” and “processor,” and the overloaded meaning of “thread.” A
number of tasks can share memory in order to implement an application, and this is really what a parallel
program is: a number of tasks cooperating to perform the function of a particular application.

2 Programming Parallel Machines
The move to multiprocessing constitutes a break with the mainstream (and embedded) software-development
tradition. Most programmers have been taught how to program single-threaded programs. Few real-time
operating systems have supported SMP processing in the past. Debuggers (with a few exceptions) operate
under the assumption that we are debugging a program that is single-threaded. There is no reason to despair,
however. Parallel machines can be tamed. For example, the computer game business complained loudly about
the difficulty of programming recent multicore game consoles like the Xbox 360 and Playstation3, but have
since come through and created frameworks that take advantage of multiprocessors [11].

There are several ways in which to write code to run on a multiprocessor machine. The most important
distinction is between message passing and shared memory programming styles. In message-passing,
communication is explicitly programmed, while shared-memory makes communication implicit in the reading
and writing of variables.1

The traditional way to program a parallel machine is to use a sequential language like C, C++, Java, C#,
FORTRAN, Ada, or assembler, and add in parallelism using operating system APIs, class libraries, compiler
directives, or language extensions. Some interesting and more or less common ways to add parallelism to
programming are the following:

 OpenMP is a set of compiler directives which are added to a program to make it execute using parallel
processors using shared memory. It requires support in the compiler, generating code based on the
underlying operating system (as well as working directly towards the underlying machine for some
operations). It is very successful in the supercomputing and server markets, and it also available for many
embedded systems [11].

 MPI is a popular standardized library for message-passing parallelism. It has been used for
supercomputing, creating programs successfully scaling to tens of thousands of processors. Just like
OpenMP, it uses the underlying operating system and hardware-specific tweaks to access parallelism.

 pthreads is the POSIX standard for threading, and is available for all Linux operating systems and many
embedded real-time operating systems.

 OS APIs offer the base support for other approaches like OpenMP, MPI, and pthreads. They can also be
used directly, and most operating systems offer support for parallelism and distribution which goes
beyond what is offered by the standards.

 Middleware APIs like Multicore association CAPI, Enea LINX, and Polycore Messenger provide a
communications API that in principle insulate each task in an application from where the other tasks are
running. Most of these are based on some kind of message-passing paradigm, since that makes
supporting distributed and AMP processing easier.

1 Message-passing is often used even on shared-memory machines, where messages are implemented using shared
memory. Shared memory can also be emulated on machines without shared memory in hardware, so there is no clear
association between hardware design and programming paradigm.

 Ada offers built-in concurrency support in the programming language, which generates calls to the
underlying operating system. Java also has concurrency handling defined as part of the language and
standard

 Erlang is one of some languages designed explicitly for parallel computation. Programs are structured to
use hundreds or thousands of lightweight tasks each with their own local storage, communicating using
message-passing. Tasks are used as the primary means of program structuring — rather like objects are
used on object-oriented programming. With a system like Erlang, hardware parallelism can be exploited
by the run-time system invisibly to application software [13]. The Occam language from the 1980’s
Transputer project is another example of an explicitly parallel language.

 Performance libraries implement common mathematical operations (like FFTs) in a way tailored to a
particular machine. Each operation from a performance library is executed in parallel using multiple
processors, even if the originating program is not really using parallelism. They are typically provided by
manufacturers to make exploiting parallel machines easier and more efficient.

 Proprietary language extensions to sequential languages like C, C++, and Java are being offered by
several compiler vendors such as CodePlay with their “sieve” extensions to C and C++. Such extensions
typically modify the language syntax and add some keywords to make expressing parallelism easier, and
also provide clearer parallel semantics. They are basically novel languages built on the base of a familiar
sequential language.

 Parallel programming platforms that add library calls to a sequential language, and then provide a
powerful runtime system that automatically use multiple cores to accelerate computations. Most of the
proposed approaches come from the stream programming field, and can use graphics processors and
other massively parallel computation devices as well as multicore processors. Such platforms are offered
by RapidMind and PeakStream [14], among others.

 Coordination languages add another language or layer on top of existing sequential programming
languages. This coordination layer dictates how parallelism is handled and how data access is
synchronized. The sequential code expresses the sequential computation of each thread, without mixing
in concurrency concerns [15].

 Transactional memory is a hardware-supported approach currently being researched, where the shared
memory of a machine is made to function much like a classic database. A “transaction” encompasses a
sequences of memory accesses that either complete successfully or abort as a group. In this way,
inconsistencies in program state resulting from concurrent data access can be reduced. Hardware support
can be relatively easily introduced extending cache coherence protocols that are already necessary to
build shared memory machines. No current hardware supports transactional memory.

Writing parallel programs seems to be easier where large data sets are being manipulated in a fairly regular
manner, like supercomputing applications and databases. Parallelizing programs with smaller data sets is
harder by experience. However, there is one mitigating factor in the current move to multicore
implementations: inside a multicore chip, communication between cores is much faster than in a traditional
multi-chip multiprocessor. This helps programmers write efficient programs, and should allow beneficial
parallelization of more types of programs.

However, debugging an asymmetric parallel system is still harder than debugging a single-processor system.
Fundamentally, humans are poor at thinking about parallel systems; we seem to be wired to handle a single
flow of events better than multiple simultaneous flows. In this paper, we will mainly consider the case of
using sequential programming languages like C and C++ with shared memory, as that is the model with the
most subtle debugging problems, and the one that most embedded programmers will encounter when
multicore processors replace old single-core processors at the core of their products.

3 The Software Breaks
Ignoring the issues of creating efficient parallel programs for the moment, even getting programs to function
correctly in an SMP environment is harder than for a single processor. Existing software that has been
developed on a single processor might not work correctly when transitioned onto a multiprocessor. That an
application works correctly in a multitasking environment does not imply that it works correctly in a
multiprocessing environment; serious new issues occur with true concurrency.

True parallel execution (or concurrency) makes it hard to establish the precise order of events in different
concurrent tasks. The propagation time of information between processors in shared-memory multiprocessors
is not zero (even if it is fairly short, a few thousand clock cycles at most), and this is sufficient to create subtle
random variations in the execution, which can snowball. A multiprocessor by nature exhibits chaotic behavior
where a small change in initial parameters gives rise to large differences in system state over time. The system
is actually inherently unpredictable, at least in terms of timing, and correct function can only be achieved by
allowing for this and designing code, which works even in what seems like bizarre circumstances.

The following catalogue of problems attempts to highlight the many new and interesting ways in which
software can break on a multiprocessor.

3.1 Latent Concurrency Problems
There can be latent problems in an existing, proven, multitasking workload that runs just fine on a single
processor. The presence of true concurrency makes mistakes in protecting against concurrent accesses much
more likely to trigger and cause program errors. As the timing of tasks becomes more variable, and they run
in parallel for longer periods of time, the task set is simply subjected to more stress. This effect is similar to
optimizing a program in a C compiler: optimizations might expose bugs in the program that were previously
hidden. The error was always there; it just didn’t manifest itself.

3.2 Missing Reentrancy
To make efficient use of a multiprocessor, all code that is shared between multiple tasks has to support
reentrant execution. This means using locks to protect shared data and to allocate local data for each time a
function is called. Shared state between invocations of the same function has to be avoided. In a multi-
processor environment, actual occurrences of multiple tasks using the same shared function simultaneously
will occur much more frequently (and thus trigger bugs according to Section 3.1).

This effect is especially important for operating systems and shared libraries, as such code will be used
heavily by multiple tasks.

3.3 Priorities do not Provide Mutual Exclusion
In application code written for a traditional single-processor, strictly priority-scheduled RTOS, a common
design pattern to protect shared data is to make all tasks that access the same data run at the same priority
level. With a strict priority-driven scheduler, each process will run to completion before the next process can
run, giving exclusive access without any locking overhead. This will fail when true concurrency is introduced
in a multiprocessor; the picture below illustrates a typical case:

CPU

Prio 6

Prio 6

Prio 5

Prio 7

Prio 6

Prio 7 Prio 6 Prio 6 Prio 6 Prio 5

Execution on a single CPU
with strict priority

scheduling: no concurrency
between prio 6 processes

Execution on a single CPU
with strict priority

scheduling: no concurrency
between prio 6 processes

CPU 1
Prio 6

Prio 6

Prio 5

Prio 7

Prio 6

CPU 2

Prio 7

Prio 6 Prio 6

Prio 6

Prio 5

Execution on multiple
processors: several prio 6

processes execute
simultaneously

Execution on multiple
processors: several prio 6

processes execute
simultaneously

This code is multitasking-safe on a single processor, but will break on a multiprocessor. This means that even
existing proven code will have to be reviewed and tested before it can be assumed to run correctly on a
multiprocessor. Explicit locking has to be introduced in order to handle the access to shared data.

One solution proposed for maintaining the semantics of single-processor priority scheduling on an SMP is to
only run the task(s) with highest priority. Thus, if there is only a single highest-priority task in a system, only
one processor will be used and the rest left idle. This ensures that high-priority tasks do not need to worry

about simultaneous execution of lower-priority tasks, but does not solve the problem for tasks with the same
priority when priority is used (incorrectly) as a serialization device.

3.4 Interrupts are not Locks
In the operating system and device driver code, you can no longer simply assume that you get exclusive
access to shared data and devices by turning off all interrupts. Instead, SMP-safe locking mechanisms have to
be used. Redesigning the locking mechanisms in an OS kernel or driver (or user application, in case it makes
use of interrupt management) is a major undertaking in the change to multiprocessors, and getting an
operating system to run efficiently on an SMP will take time [19][20].

Note that device drivers can sometimes be helped by hardware architecture. By steering all external interrupts
from devices onto a single processor, that processor can often run single-processor device drivers without
change. Disable/enable interrupts will work to integrate various parts of the device driver just like on a single-
processor machine.

3.5 Race Conditions
Race conditions are situations where the outcome of a computation differs depending on which participating
task gets to a certain point first. They typically trigger when some piece of code takes longer than expected to
execute or timing is disturbed in some other way. Since race conditions are inherently timing-related, they are
among the hardest bugs to find. The name comes from the fact that the tasks are racing forward in parallel,
and the result depends on who gets to a certain point first.

The picture on the left below illustrates the classic data race, where a piece of data shared between two tasks
and the tasks do not protect the common data with a lock. In this case, both tasks can be editing the data at the
same time and will not correctly account for the updates from the other task. If task 1 was fast enough, it
could finish its editing before task 2 begins, but there are no guarantees for this. Note that shared data is often
a complex data structure, and the net result of a race is that different parts of the structure have been updated
by different tasks, leading to an inconsistent data state.

• Correct behavior • Incorrect behavior

Task 1 Task 2Shared
data

read

write
edit

read

write
edit

Task 2 gets the
updated value

from task 1

Task 2 gets the
updated value

from task 1

Task 1 Task 2Shared
data

read

write

edit read

write

edit
Task 1 and

task 2 work on
the same data

Task 1 and
task 2 work on
the same data

Update from
task 2 gets

overwritten by
task 1

Update from
task 2 gets

overwritten by
task 1

• Expected sequence • Possible incorrect sequence

Task 1 Task 3

msg1

msg2

calc

Task 2 expects
data from first

task 1 and then
task 3

Task 2 expects
data from first

task 1 and then
task 3

Task 2

calc

Task 1 Task 3

msg1

msg2

calc

Messages can
also arrive in a
different order

Messages can
also arrive in a
different order

Task 2

calc

Classic data race Message races
The picture on the right illustrates another type of race, the message race, where one task is expecting a series
of messages from other tasks. Such messages can come in any order, as there is no synchronization between
the tasks; if task 2 implicitly expects a certain order, it will get the wrong results if task 3 happens to send
before task 1. Whenever the ordering of events is important, explicit synchronization has to be in place.

Note that races occur in multitasking single-processor systems too, but there they are less likely to trigger, as
they require a task switch to occur at an unlucky time. In a true concurrent system, races will happen more
often, as discussed in Section 3.1.

3.6 Deadlocks
When all shared data is protected by locks, you get into another situation where the locking itself can be the
cause of errors. If two tasks are taking multiple locks in different order, they can get stuck, both waiting for
the other task to release the other lock. A simple but fairly typical example is given below:

Task T1 Task T2
main():
 lock(L1)
 /* work on V1 */
 lock(L2)
 /* work on V2 */
 unlock(L2)
 /* more work on V1 */
 unlock(L1)

main():
 lock(L2)
 /* work on V2 */
 foo()
 /* more work on V2 */
 unlock(L2)

foo():
 lock(L1)
 /* work on V1 */
 unlock(L1)

Task T1 locks lock L1 first, which protects the variable V1. After awhile, T1 also needs to work on variable
V2, protected by lock L2, and thus needs to lock L2 while still holding L1. This code in itself is sound, as all
accesses to shared data is correctly protected by locks. In task T2, work is being performed on variable V2,
and lock L2 is taken. When calling the function foo(), V1 is also accessed, and locking is in place.

Assume a scenario where T1 and T2 start at the same time, and manage to obtain one lock each. When T1
gets to the point lock(L2), it stops and waits as T2 is holding that lock. Slightly later, T2 gets to the call to
function foo(), and duly tries to lock L1. At this point, we are stuck, as T1 and T2 are mutually waiting for
the other task to release a lock, which will never happen. We have a deadlock.

The example above illustrates a common cause of deadlocks: calling into functions like foo(), which do
locking invisible to the caller. In a complex software system, it happens easily that locks get taken in a bad
order if no measures are taken to ensure consistent locking orders.

3.7 Partial Crashes
When a computation involves multiple tasks that compute different parts of an overall solution, it is possible
that one (or more) of the tasks crash during the computation. This problem in a single task will then escalate
to a parallel problem, as the other tasks wait forever for the crashed task to get back with its part of the result.

3.8 Silent Parallelization Errors
Parallel code written with explicit calls to threading libraries will naturally have to check whether thread
creation and other operations succeeded, but when using indirect parallel programming by compiler directives
like OpenMP, error handling is often suboptimal. The compiler will create extra code in the application to
start tasks and handle synchronization, and this code does not have a defined way to report problems to the
main user code – since it is not part of the program text per se. If a program fails to create the tasks it needs at
run-time, it might just crash or hang or fail silently with no message to the user or programmer indicating a
problem. Such behavior makes it unsuitable for high-reliability code where error recovery is necessary.

3.9 Bad Timing Assumptions
Missing synchronization is a common theme in parallel programming bugs. One particular variant to be wary
of is the assumption that one task is going to finish its next work long before some other task needs the results
of this work. In essence, as a task T1 is doing something short and simple, we expect that work to be
completed before a task T2 finishes something long and complicated, and we know that they start out at the
same time. A simple example is the following:

Task T1 Task T2
create(T2)
write(V)

initialize()
read(V)

Here, we expect T1 to finish writing V long before T2 is done with its initialization. However, it is possible
that T2 in some situation completes its initialization before T1 can complete its write. This sort of bug
typically triggers under heavy load or unusual situations in a shipping system.

3.10 Relaxed Memory Ordering Wreaks Havoc
For performance reasons, a multiprocessor employs various forms of relaxed memory orders (also known as
weak memory consistency models). Basically, the computer architecture specifically allows memory
operations performed to be reordered and queued locally on a processor in order to avoid stalling a processor
when the memory system is slow. In most such models, memory operations from one processor may be

observed in a different order from the viewpoint of another processor. This is necessary in order to get any
efficiency out of a multiprocessor system. There are a number of relaxed memory orderings2, differing in how
operations can bypass each other [22]. Understanding relaxed memory orders is probably one of the hardest
parts of understanding parallel computing [10], and trying to understand the details of a particular memory
consistency model is quite headache-inducing. Unfortunately, the memory consistency model of a system is
visible to a programmer since it affects data-transfer operations between parallel threads.

Many data exchange algorithms that are correct on multitasking single processor systems break when used on
multiprocessors. For example, reads can almost always be performed out of order with respect to the program,
and sometimes writes might be seen in different orders on different processors, especially when they originate
from different other processors. In general, it is necessary to use special operations like memory barriers to
guarantee that all processors in a system have seen a certain memory operation and that the state is thus
globally consistent. Failing to deal with memory consistency will result in intermittent timing-sensitive bugs
caused by processors observing the same execution in different orders.

One example is the classic Dekker locking algorithm shown below, which is perfectly valid on a single
processor (assuming that each read of a flag variable is atomic), no matter how tasks are interleaved.

Task T1 Task T2 Example sequence
Basic algorithm

flag1 = 1
if(flag2 == 0)
 critical section

flag2 = 1
if(flag1 == 0)
 critical section

Problem example
x = 6
y = 5
flag1 = 1
…

…
while(flag1==0)
loop;
read x
read y

Task 3 Task 2

Task 1 writes variables
X, Y, and flag1 in
order. Tasks 2 & 3

might see the updates
in a different orders.

Task 1 writes variables
X, Y, and flag1 in
order. Tasks 2 & 3

might see the updates
in a different orders.

Task 1

X

Y

flag1

Assuming that all variables are zero to begin with, it is quite possible to read old values for x and y in task T2
despite the use of a “lock,” since there is no guarantee that the writes to variables x and y are seen by task T2
before the write to flag1. With a relaxed memory ordering, you cannot assume that writes complete in the
same order as they are specified in the program text. For example, if the write to flag1 hit the local cache, and
x and y missed the cache, the net result could be that the write to flag1 takes a longer time to propagate. The
execution is illustrated on the right in the picture above (in which we assume that each task runs on its own
processor). Note that an additional task 3 can see the writes in the “expected” order – which is the common
case. The rare case is the problem case. The programming solution is to put in barriers, forcing memory writes
and reads to complete before the tasks continue beyond the lock. The cost is in performance, as processors
stall when memory operations run to completion.

A more complex example that fails for the same reason is the following scheduling code:

Task T1 Task T2 … Task Tn
while(there are workunits)
{
 allocate new workunit
 fill in workunit data
 insert workunit into linked list
}
Head = first workunit

while(MyWorkunit == NULL)
{
 lock critical section
 if(Head!=NULL)
 {
 MyWorkunit = Head
 Head = Head -> next
 }
 release lock for critical section
}
read data from MyWorkunit

2 Note that the potential operation reorderings allowed by a specific memory consistency model are precisely defined, but
that even so, understanding the implications of a particular memory consistency model requires deep considerations.
University students usually find memory consistency the hardest part of computer architecture.

Here, the worker tasks T2…Tn wait for the linked lists of work units to become available from the master
thread T1, and then grab work units off of it protected by a lock. However, considering the possibility of write
reordering, the work unit data read by a worker task need not be complete just because the linked list has been
updated. And if the locking is not multiprocessor-aware, the whole task queue can be destroyed by processors
having a different idea of the value of Head.

Yet another example of the problems caused by memory consistency is the need to explicitly flush memory
writes so that they become visible to all other processors in the system. On certain processor architectures,
programs will just deadlock since necessary data for progress is queued on a processor that does not think it
needs to write back data to memory.

Note that using the C keyword “volatile” has no effect on memory consistency; it does guarantee that the
compiled code writes variable values back to memory, but provides no guarantees as to when other processors
will see the write. Some kind of explicit synchronization operation is needed additionally. This is a symptom
of a general problem in that most language definitions do not consider the implications of multiprocessors.

Even when multiprocessing is considered, programming complexity is not necessarily reduced. For example,
the Java language specifies a “Java Memory Model” which is fairly weak. This has the advantage of making it
possible to optimize performance on a multiprocessor host. It also has the disadvantage of forcing application
programmers to deal with memory consistency issues and to include barriers and locks even into regular
application code.

4 Debugging Parallel Programs
Debugging parallel programs is generally acknowledged as a difficult problem. Most of the literature on
parallel programming focuses on the constructive part of creating a parallel algorithm for a particular problem
and how to implement it, and mostly ignores issues of debugging and troubleshooting [11]. Despite the fact
that multiprocessing has been on the horizon for a long time, very little in terms of practical tool support for
parallel programming and debugging has been produced [5][16] [19]3.

Debugging a software problem on a multiprocessor problem involves three main steps:

 Provoking problems

 Reproducing problems that have been provoked

 Diagnosing and resolving the reproduced problems

What makes multitasking programming and debugging difficult is that provoking and reproducing problems
is much harder than with single-threaded programs. In classic single-tasking programs, most bugs are
deterministic and caused by particular variations of input. Such deterministic bugs will still occur in each task
in a parallel system, and will be solved in a traditional manner.

The parallel program adds a new category of bugs caused by the interaction of multiple tasks, often depending
on the precise timing of their execution and communications. Such bugs are the most difficult bugs to
provoke and reproduce, not to mention understand and resolve. They are often called Heisenbugs, meaning
bugs that change behavior (usually, by moving somewhere else or disappearing from sight) when you try to
observe the program in order to discover them [6] [16].

This section discusses techniques for debugging multiprocessor programs in spite of this. Some techniques
focus on provoking and reproducing bugs and others on diagnosis of the problems.

4.1 Breakpoints on Single Tasks
A traditional single-task debugger can be applied to a parallel software system by debugging a single task in
the traditional manner, setting breakpoints and watchpoints, and investigating state. This sometimes does
work well in a parallel system, but carries some obvious risks:

3 Part of the problem could be that parallel programming has been on the horizon for a very long time, always in line as
the next big thing but never actually arriving. It’s simply a case of “crying wolf.”

 Breakpoints disturb the timing. Activating a breakpoint or watchpoint and just observing that it was
triggered (i.e. not stopping execution) will make the timing of the task different. As discussed above,
timing changes can make the program take a different path, avoiding the problem being investigated.

 A stopped task can be swamped with traffic. If a single task is stopped and the rest of the parallel
program continues to run, the other tasks in the system might keep queuing up requests for work and
communications with the stopped task. This might cause an avalanche of problems in the rest of the
parallel program if queues fill up and other tasks get time-outs on replies. Also, when the stopped task is
resumed, it might be faced with an unusually large amount of communications from other parts of the
application, leading to a different behavior.

 A stopped processor in a real-time system will quickly cause a system crash or watchdog reset, as the
computer system is expected to keep up with the sensors and actuation needs of the controlled system.

Many tools in the market today support running multiple debug sessions in parallel, originally in order to
support asymmetric multiprocessors (typically one window to the DSP, one window to the control processor).
Such solutions typically feature various forms of synchronizations between the debugger sessions, so that
when one processor stops, the other stops. Such global stops have a certain skid time, since it takes a small but
non-zero time for the debugger to catch one breakpoint and order the other processors to stop. Also, doing a
global stop might not be feasible in a system connected to the outside world. For example, the operating
system will still need to run in order to handle interrupts from peripheral devices. Stopping a processor does
not mean stopping the world.

Such tools are better than a single sequential debugger in an SMP environment, but the hardware support is
not really there to make them work as well as expected. Consider the issue of using hardware breakpoints: A
hardware breakpoint set in the debug facilities of one particular processor will not trigger if the task is
scheduled onto another processor before executing. Debuggers for SMPs must work around such issues, as
the hardware itself does not provide the facilities to migrate breakpoints around with tasks.

4.2 Tracing
Tracing is an indirect debug that gathers knowledge: If an error is provoked or reproduced when tracing is
enabled, the trace will hopefully contain hints to the sequence of events leading up to the error. Using this
information, you can then construct a hypothesis as to what went wrong.

Traces can be gathered in a number of ways:

 Printf: The most common trace tool (and probably debug tool overall) is to use printouts in a program to
determine its execution path. The advantage of using printouts inside the application code is that the
information is typically application-level and semantically rich; a debug printout generally states that a
program has reached a certain point and shows the values of relevant data at that point. The obvious
disadvantage is that adding printouts to a program disturbs its timing, potentially changing its behavior so
that the bug disappears. There have been cases where the printouts had to be left inside shipping systems
(albeit silenced), as the system did not work without them.

 Monitor code: A more structured way to trace is to use special monitor programs that monitor system
execution, outside of the actual application code. Such monitors will have less timing impact on the
overall system, but also provide less information compared with a printout approach. Some
multiprocessing libraries provide hooks for monitors. Embedded operating systems typically offer tools
that trace operating system-level events like task scheduling, pre-emption and messages, which can be
very useful to understand the behavior of a system. Sun’s DTrace tool is one example of such a tool
(available for the Solaris operating system).

 Instrumented code: Some debug and software analysis tools instrument the source code or binary code of
a program to trace and profile its behavior. Such instrumentation will change the program behavior, but a
tool can use intelligent algorithms to minimize this effect. Instrumenting binaries makes it possible to
specifically investigate shared memory communications, as each load and store instruction can be traced.

 Bus trace: Since basically all multiprocessor systems use caches, tracing system activity on the memory
bus will only provide a partial trace. Also, some systems employ split buses or rings, where there is no
single point of observation. Continued hardware integration is making bus analysis less and less feasible
as time goes by.

 Hardware trace using core support: A hardware trace buffer drawing on processor core abilities like
embedded trace features and JTAG interfaces is a standard embedded debug tool. Applying a hardware
trace to one processor in a multiprocessor system will provide a good trace of its low-level behavior, and
provide minimal timing disturbance (provided the trace can keep up with the processor). The information
will have to be digested by a debugger to provide a good insight into the system behavior. See the
discussion in Section 4.3 for more on how hardware support can help multicore debugging.

 Simulation: Simulation (as discussed in Section 4.8) offers a way to trace the behavior of a system at a
low level without disturbing it. The overall functionality is very similar to hardware tracing, with the
added ability to correlate traces from multiple processors running in parallel. Simulation avoids the
correlation problem.

A general problem with tracing is that when tracing execution on a multiprocessor system, it can be hard to
reconstruct a global precise ordering of events (in fact, such an order might not even theoretically exist).
Thus, even if the event log claims that event A happened before event B based on local time stamps, the
opposite might be true from a global perspective. In a distributed system where nodes communicate over a
network, a consistent global state and event history is known to be very hard to accurately reconstruct. This
applies in particular to low-level hardware traces that need to match up traces from different processors on a
cycle-by-cycle basis, considering all the possible delays and jitter from data transmissions over JTAG or other
debug ports and trace units. Failing to match traces correctly will present an incorrect picture of the system
behavior.

A limitation of most forms of tracing is that they only capture certain events. No information is provided as to
what happens between the events in the trace, or to parts of the system that are not being traced. If more fine-
grained or different information is needed, the tracing has to be updated correspondingly and the program re-
executed.

Detailed traces of the inputs and outputs of a particular processor, program, task or system can be used to
replay execution, as discussed in Section 4.9 [6].

4.3 Hardware Multicore Debug Support
Hardware is beginning to provide support for debugging tightly-coupled multicore architectures. Typically,
this involves adding monitoring, tracing, and breaking facilities into the heart of the multicore SoC. Such a
debug facility can listen both to the traffic on the internal bus between cores, and possibly also to the traffic
between a core and its caches. A complicating issue is that the bandwidth available on the external debug port
of an SoC is limited compared to the rate of data generated by a multicore system running at gigahertz speeds.
Thus, intelligence and storage for traces has to be integrated into the debug facility. An important debug
support feature is cross-triggering, where events observed on one core can cause execution to stop or tracing
to start or stop on other cores [17][18].

Note that the traffic visible on the external bus of an integrated multicore SoC is not very helpful, since it is
filtered by several layers of caches. Much of the communication between cores never needs to go off-chip at
all (which is one important benefit of multicore designs).

4.4 Bigger Locks
If the problem in a parallel program appears to be the corruption of shared data, a common debug technique is
to make the locked sections bigger, reducing available parallelism, until the program works. Alternatively, the
program is first implemented using very coarse locking to ensure correct function initially. This is typically
what has happened in previous moves to multiprocessing in the computer industry, for example in the
multiprocessor ports and optimization of Linux, SunOS [19] and MacOS X [20].

After locks have been made coarser, the scope of locking is carefully reduced in scope to enhance
performance, testing after each change to make sure that execution is still correct. Finally, since fine-grained
locking is usually used to increase performance, performance has to be analyzed. If the wrong locks are made
finer-grained, no performance increase might result from an extensive effort. Too fine-grained locking might
also create inefficiencies when execution time is spent managing locks instead of performing useful
computation.

4.5 Apply a Heavy Load
Reliably provoking and reproducing errors is one of the major problems in debugging parallel systems. Since
errors typically depend on timing, stretching the timing is a good way to provoke errors, and this can be done
by increasing the load on a system. At close to 100 percent CPU load, a system is much more likely to exhibit
errors than at light loads. The best way to achieve this is to create a test system that can repeatedly apply a
very heavy load to a system by starting a large number of tasks. The tasks should preferably be a mix of
different types of programs, in order to exercise all parts of the software system. This method has proven to be
very successful in ensuring high reliability in systems like IBM mainframes [21].

4.6 Use a Different Machine
For most embedded systems, the machine a piece of code will run on is usually known. The hardware design
and part selection is part of the system development. Thus, running a piece of code on a different machine
might seem pointless: We want it to work on the target system. However, testing on different hardware is a
good way to find timing bugs, as the execution timing and task scheduling is likely to be different. It also
serves to make the code more likely to work on future generations of the target system which are more than
likely to exhibit different timing and a different number of processor cores.

A machine can be different in several relevant ways: Each processor might be faster or slower than the actual
target. It might also have a different number of processors, more or fewer. Moving to different processor
architecture or a different operating system is likely to take as much time under a tight schedule, but if it can
be done, it is an excellent way of flushing out bad assumptions in the code. Portable code is in general more
correct code.

Simulation, as discussed in Section 4.8, offers an interesting variant on using a different machine.

4.7 Use a Different Compiler
Just like using several different machines to run a program creates variation and makes problem exposure
more likely, compiling a program using several different compilers also serves to find problems. Different
compilers perform program analysis in different ways and typically generate different warnings (errors should
be consistent across compilers unless a program is seriously borderline). Especially the complex features used
in parallel programming like compiler directives and libraries (OpenMP and MPI in particular) vary across
compilers. Thus, if a program runs well when compiled with several different compilers, it is more likely to
be correct than if it is just compiled using a single compiler.

4.8 Simulate the System
The key problem with debugging a parallel system is lack of synchronization between parallel processors and
determinism in execution. The inherent chaotic behavior makes cyclical debugging very hard. There is one
technique that overcomes these problems: simulation of the target system. Traditionally, simulation has been
used as a means to develop and run software before the real hardware was available. In the area of parallel
computer system execution, simulation remains useful even after hardware becomes available – simulation of
a parallel machine provides explicit control over the execution of instructions and propagation of information,
which makes for a very powerful debugging tool.

A simulated system fundamentally provides determinism, as each simulation run repeats the same execution
(unless nondeterministic inputs or timing variations are provided as external input). This enables classic cyclic
debugging. It also makes reproducing errors easier, as once a bug has been provoked in a simulation, the same
bug scenario can be replayed over and over again in exactly the same manner.

Simulators are commonly used as a backend to standard debuggers, in which a user simply connects to the
simulator instead of to a JTAG probe, remote debug server or other debug interface. The simulator makes it
possible to single-step one task while time is virtually standing still for other parts of the system, which solves
the problems with breakpoints discussed in Section 4.1. For a real-time system where a simulation of the
external world is available, simulation also makes it possible to single-step code and to stop the system
without the external world running ahead.

Full-system simulators capable of running the complete software stack (from firmware to application
software) also provide the ability to inspect and debug the interaction of an application with the operating
system, as well as low-level code such as operating-system kernels and device drivers. Fundamentally, a full-

system simulator provides a controlling layer underneath the hardware, which enables capabilities that simply
cannot be provided by traditional hardware-based debug tools.

A simulator will not be able to faithfully reproduce the detailed timing of a real system (in any non-trivial
case). This is not really a problem for software development, as the goal is to find and eliminate software
bugs: If they occur in the simulator, they could have happened in some real circumstance as well, and thus
they are valid bugs that should be fixed [25].

Furthermore, a simulator offers an interesting variant of running on a different system, as discussed in Section
4.6. The simulator can be used to increase the number of processors present beyond that available on any real-
world machine in order to stress the software, and checks its behavior on future machines with more cores.
Simulation can make different processors run at different speeds in order to provoke errors. Performing such
corner-case chasing in simulators is common in hardware design, and it has great potential as a tool for
software developers as well.

Several vendors offer simulation solutions for embedded systems of varying scope. The investment to create a
simulation model can be quite high. But for larger development projects, the benefits typically outweigh the
costs, especially when considering the added value of reverse debugging, as discussed in Section 4.9.

4.9 Replay Execution
A recurring theme is the problem that re-executing a multitasking, multiprocessor program will result in a
different execution, potentially failing to trigger bugs. If a program can be forced to execute in the same way
multiple times, debugging will be much easier. Such techniques are known as record-replay techniques.
Replay is different from tracing, as the amount of data needed to facilitate a deterministic replay can be made
much smaller than a full trace. The trace recorded only needs to contain the non-deterministic events from the
real system, like task switches, message arrivals and other communication between tasks [6] [16].

To enable replay, the system has to contain a monitor that can record relevant data as well as force the
execution to replay the same behavior. Typically, this has to work on the operating-system level, but it can
also be applied at the application level if a program has sufficiently well-defined interfaces to the outside
world (a state machine is a good example of this: The time and type of messages arriving will determine its
precise behavior).

In a parallel program setting, replay can be done on a single task, on a set of tasks (an entire application), or
even on all software running on a single computer node. Recording-based replay allows the debugger to
isolate one part of the system, as all input values and asynchronous timings are known. The rest of the system
does not need to be running in the debug session, simplifying the problem.

A less precise form of replay is to capture system interactions with the environment in the field, by adding
logging facilities to a deployed system. Such interaction capture ignores internal system state changes, and
thus cannot force execution down a particular path. But if the root cause of a problem is an unusual order of
external events, such capture and replay can help debugging. If nothing else, a scenario can be replayed in the
lab into some other debugging system to provide a good starting point for more detailed and powerful
debugging tools.

4.10 Reverse Debugging
One of the key problems in debugging parallel programs in general, and parallel programs running on
multiprocessors in particular, is that re-executing a program to put a breakpoint to locate an error is likely not
to reproduce an error. Instead, a programmer would like to be able to go back from the point at which an error
occurs and investigate the events that immediately preceded the error. What is needed here is a tool that
allows reverse debugging, i.e. the ability to back up in a program from the current state instead of (attempting
to) reproducing the state by executing from the start [9].

Reverse debugging is particularly useful for bugs corrupting the state of the machine. If the stack is
overwritten or a process has terminated, there is little material to use for post-mortem bug analysis. By
backing up in time, the state prior to the bug can be examined.

Tools for reverse debugging do exist today in the market. They can be based on simulation (see Section 4.7),
trace collection (see Section 4.2) or regular desktop virtual machine technology [23]. Such tools offer the
ability to back up the execution to examine the path that led to a tricky bug. Tools based on traces will by
necessity have a limited window of observation (limited by the size of the trace buffer), while simulation- and

virtual-machine-based tools can make use of the resources of a powerful workstation to allow much longer
sequences of execution to be observed. Also, most tools do not offer multiprocessor support.

Compared to replay as discussed in Section 4.9, reverse debugging is typically faster in practical use, as
backing up a short distance in the execution is faster than reloading and replaying a complete execution. One
of the main advantages of reverse debugging is actually that a programmer can focus on a small context and
go back and forth over it, applying different breakpoints and traces to understand the bug, without long
turnaround times that break the flow.

4.11 Dynamic Analysis
Dynamic analysis tools trace a program as it runs and try to find potential problems even if no error occurs in
that particular run. The idea is to trace the memory accesses and synchronizations between threads, and look
for potential problems using various algorithms that generalize from a single execution. There is no guarantee
that all problems are found, since only code paths similar to those in the underlying concrete set of paths can
be investigated. For example, code that is never executed in the concrete test case will not be subject to
analysis. Even so, it is much more effective than regular testing that has to actually provoke a concrete error
in order to spot it. It is also very important to note that a dynamic tool targets a specific type of error, and that
each type of error typically requires a custom algorithm to detect.

One example is Intel’s ThreadChecker, a tool that attempts to check that all shared data accesses follow a
correct locking regime. Basically, the tool checks that locks are always acquired in the same order by all parts
of the program. If this makes sense for your program, it can offer very good help for locating that particular
(and important) class of bugs. The open-source Valgrind tool has support for finding errors in MPI programs.
The downside of such tools is that execution runs about 100 times slower than normal execution due to the
instrumentation overhead.

4.12 Formal Methods
No discussion on debugging is complete without mentioning formal methods. In contrast to dynamic analysis,
formal methods explore all possible executions of a program. Thus, formal methods promise to find all errors
regardless of whether they are actually encountered in a concrete test run.

Program-checking tools from vendors like Polyspace and Coverity have been on the market for several years.
They start by analyzing the behavior of single threads, which is a hard problem in its own right. They also are
extending into analysis of parallel applications, but such coverage is currently limited. Also, the analysis time
can be prohibitively large for large programs [26].

In general, real-world formal method tools applicable to real programs will behave analogously to lint: they
will initially produce many false warnings, that are removed by customizing the rules set and making the code
clearer. They will also only find the types of bugs they were designed to find. For example, a wild pointer will
not be found by a tool checking for deadlock in message passing. But when used, they can dramatically
increase the quality of code.

Another way to apply formal methods is to focus on the parallel algorithms being used rather than their
concrete implementations in code. Especially for communications-intense systems featuring custom protocols
at various levels, checking the correctness of the protocol itself is a powerful way to find fundamental bugs
before they are committed to harder-to-fix code [27].

5 Summary
This paper has discussed the software implications of the undergoing hardware paradigm shift to
multiprocessor, shared-memory computers. This is a fundamental change in how computers are constructed,
and will affect both existing code and the creation of new code. We have taken inventory of problems that
occur when moving to multiprocessor environments, and discussed a number of debug techniques available
today on the market. The future is parallel, and we really have no choice but to prepare our code and
ourselves for handling that parallelism. Even if the current situation in programming tools for multiprocessors
is fairly bleak, we should expect new tools to hit the market in coming years that will make multiprocessor
programming and debugging easier.

Acknowledgements
Thanks to Lars Albertsson, Erik Hagersten, Henrik Löf, and my colleagues at Virtutech for discussions and
input on multiprocessing and software development.

More Reading
If you want to know more about this subject, here are some recommended articles and books that will provide
insight into the issues of parallel programming and debugging.

[1] Luiz Barroso. “The Price of Performance”, ACM Queue, September 2005.

[2] Vikas Agarwal, M.S. Hrishikesh, Stephen W. Keckler, and Doug Burger. “Clock Rate versus IPC: The
End of the Road for Conventional Microarchitectures,” International Symposium on Computer
Architecture (ISCA), 2000.

[3] Kevin Krewell. “ARM Opens Up to SMP – MPCore Supports One to Four CPUs”, Microprocessor
Report, May 24, 2004.

[4] David Manners. “Will Multicore Processing Fulfil its Potential?”, Electronics Weekly, 17 April 2006.

[5] Jeff Bier. “Back to the drawing board on multicores, multiprocessing”, Embedded.com
(www.embedded.com), November 28, 2005.

[6] Charles E. McDowell and David P. Helmbold. “Debugging Concurrent Programs”, ACM Computing
Surveys, December 1989.

[7] Kevin Kissel and Pete Del Vecchio. “Achieving multicore performance in a single core SoC using a
multithreaded virtual processor”, Embedded.com (www.embedded.com), Nov 20, 2006.

[8] Michael Christofferson. “Using an asymmetric multiprocessor model to build hybrid multicore designs”,
Embedded.com (www.embedded.com), Nov 5, 2005.

[9] Herb Sutter and James Larus. “Software and the Concurrency Revolution”, ACM Queue, September
2005.

[10] Herb Sutter. “The Free Lunch is Over”, Dr. Dobbs Journal, March 2005.

[11] Geoff Gaisor. “Valve's Source engine goes multi-core – Multithreading promises to make the next Half-
Life episode even better”, The TechReport (www.techreport.com), Nov 13, 2006.

[12] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to Parallel Computing
(2nd edition), Addison Wesley, 2003.

[13] Bruce Tate. “Crossing Borders: Concurrent Programming in Erlang”, IBM DeveloperWorks, 18 April
2006.

[14] Harry Goldstein. “Cure for the Multicore Blues”, IEEE Spectrum, January 2007.

[15] Edward Lee. The Problem with Threads, Technical Report No. UCB/EECS-2006-1, University of
California at Berkeley, 10 January 2006.

[16] Joel Huselius. Debugging Parallel Systems: A State of the Art Report. MRTC Report no. 63,
(www.mrtc.mdh.se), September 2002.

[17] A. Mayer, H. Siebert, and K. D. McDonald-Maier. “Debug Support, Calibration and Emulation for
Multiple Processor and Powertrain Control SoCs”, Design, Automation and Test Europe (DATE 2005),
March 2005.

[18] Bertrand Déléris. “Battling Bugs”, Electronic Design News (EDN), December 1, 2006.

[19] Mache Creeger. “Multicore CPUs for the Masses”, ACM Queue, September 2005.

[20] John Siracusa. “MacOS X 10.4 Tiger”, ArsTechnica (www.arstechnica.com), April 28, 2005.

[21] S. Loveland, G. Miller, R. Previtt, and M. Shannon. “Testing z/OS: The Premier Operating System for
IBM’s zSeries Server”, IBM Systems Journal, Vol 41, No 1, 2002.

http://www.embedded.com/
http://www.embedded.com/
http://www.embedded.com/
http://www.techreport.com/
http://www.mrtc.mdh.se/
http://www.arstechnica.com/

[22] John L Hennessy and David A Pattersson. Computer Architecture: A Quantitative Approach, 3rd Edition.
Morgan Kaufmann, May 2002.

[23] Samuel King, George Dunlap, and Peter Chen. Debugging operating systems with time-traveling virtual
machines, Proc. USENIX Annual Technical Conference, April 2005.

[24] Kang Su Gatlin and Pete Isensee. “Reap the Benefits of Multithreading without All the Work”, MSDN
Magazine, October 2005.

[25] Jakob Engblom and Dan Ekblom. “Simics: A commercially proven full-system simulation framework”,
Workshop on Simulation in European Space Programmes (SESP 2006), November 2006.

[26] Jack Ganssle. “Static Analyzers and the ESC”, Embedded.com (www.embedded.com), September 14,
2005.

[27] Klaus Havelund, Kim Guldstrand Larsen, and Arne Skou. “Formal Verification of a Power Controller
Using the Real-Time Model Checker UPPAAL”, Real-Time Systems Symposium, December 3-5, 1997.

http://www.embedded.com/

	1 Introduction
	1.1 Terminology

	2 Programming Parallel Machines
	3 The Software Breaks
	3.1 Latent Concurrency Problems
	3.2 Missing Reentrancy
	3.3 Priorities do not Provide Mutual Exclusion
	3.4 Interrupts are not Locks
	3.5 Race Conditions
	3.6 Deadlocks
	3.7 Partial Crashes
	3.8 Silent Parallelization Errors
	3.9 Bad Timing Assumptions
	3.10 Relaxed Memory Ordering Wreaks Havoc

	4 Debugging Parallel Programs
	4.1 Breakpoints on Single Tasks
	4.2 Tracing
	4.3 Hardware Multicore Debug Support
	4.4 Bigger Locks
	4.5 Apply a Heavy Load
	4.6 Use a Different Machine
	4.7 Use a Different Compiler
	4.8 Simulate the System
	4.9 Replay Execution
	4.10 Reverse Debugging
	4.11 Dynamic Analysis
	4.12 Formal Methods

	5 Summary
	Acknowledgements

