
Why SpecInt95 Should Not Be Used to Benchmark Embedded Systems Tools

Jakob Engblom (Industrial PhD Student)
Department of Computer Systems

Uppsala University
jakob@docs.uu.se

IAR Systems AB
Uppsala

jakob.engblom@iar.se

Abstract
The SpecInt95 benchmark suite is often used to evaluate
the performance of programming tools, including those
used for embedded systems programming. Embedded
applications, however, are often targeting 8- or 16-bit
processors with limited functionality, whereas SpecInt95
has no particular target architecture and a bias towards
32-bit systems. Hence, there are reasons to question the
use of SpecInt95 for the evaluation of tools for embedded
systems.

We present a comparive study of the static properties of a
set of embedded application and the SpecInt95
benchmarks. The properties studied include: variable
types, function argument lists, type of operations, and the
use of local and global memory.

The study provides clear evidence that embedded
applications and the SpecInt95 program suite differs
significantly in several important areas. Hence, we
conclude that using SpecInt95 to evaluate or compare
tools for embedded systems is likely to be irrelevant or
misleading, and that there is a clear need for a benchmark
suite tailored for the embedded applications area.

1 Introduction

The SpecInt95 benchmarks [1] are often used to
evaluate the performance and functionality of various
programming and program analysis tools.

It is a common view in the embedded systems commu-
nity that the SpecInt95 suite is not typical for embedded
applications. However, there has been no firm evidence to
support this view, and despite this gut feeling, the
SpecInt95 suite (and older Spec suites) is being used to
compare tools for embedded systems.

In this paper we present the results from a study which
aims to quantify the appropriateness of the SpecInt95
benchmarks for evaluating embedded systems tools. Our
method has been to measure the static properties of the
SpecInt95 benchmarks, and compare the data to data
collected from real embedded and real-time programs,
thereby providing hard evidence on which the
appropriateness of SpectInt95 can be judged.

Our study was performed by compiling programs with
an instrumented compiler which gather statistics on the
properties of the code.

Only static properties were measured, i.e. properties
that can be determined by analyzing the source code of a
program, without executing it. In contrast, dynamic
properties are determined by observing the execution of a
program.

Considering static properties is appropriate for
evaluating analysis tools, since these tools operate on the
program source code. The dynamic properties of programs
are relevant when comparing the performance of code or
processors, but not so much when comparing, evaluating,
or designing programming tools.

One example of a programming tool affected by the
static properties of the code is a compiler. The perform-
ance of a compiler is closely related to the static properties
of the input: large or small functions, complex or simple
data flow, etc.

Another example is worst-case execution time (WCET)
analysis. WCET analysis is performed by statically
analyzing the code, and both the run-time of the tool and
the quality of the results are directly related to how well
the algorithms employed fit the actual input.

The investigation of the SpecInt95 benchmarks and
their relation to embedded programs is part of a study of
embedded and real-time programs [2] with the purpose of
gathering information that allows us to formulate require-
ments for industrial-strength worst-case execution time
analysis [3].

The focus of thus study is on small embedded systems,
based on eight- and sixteen-bit processors. Such proces-
sors are used in most of today’s embedded systems1.

The programming language used in this study is C,
since this is the dominant programming language in the
embedded systems field [4]. Note, however, that the
analysis is performed on the intermediate code level, and
hence it is relatively language independent.

Related work. We have not found any previous study
dealing with the static properties of real commercial prog-
rams targeted for small embedded systems.

There has been some work on comparing the SpecInt95
benchmarks to other programs. In one such study, a group

1 In 1998, about 2 billion 8-bit and 1 billion 16-bit processors
were sold, compared to 200 million embedded 32-bit processors,
and just 100 million 32- and 64-bit CPUs for desktop computing.

This paper is a revised version of a paper originally
presented at the ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems 1999
(LCTES’99), held in Atlanta in May 1999.

at the University of Washington compared the dynamic
properties of Windows NT applications and the SPEC 95
benchmarks [5]. The conclusion was that the SpecInt95
benchmarks differ from the desktop programs regarding
the pattern of function calls.

Statistics on the static characteristics of code in the
Oberon system was collected by Lampe [6]. His study
only covered the syntax of the source code, unlike our
measurements of intermediate code. His conclusion was
that all constructs in the language were used, thus indi-
cating that there were no unnecessary features in the
Oberon language.

This paper is organized as follows: in Section 2, we
present the methodology and tools used for analysis.
Section 3 contains information about the programs used in
the study. In Sections 4 to 7, we compare the data for
SpecInt95 and embedded systems for various categories of
measurements. Section 8 discusses conclusions and gives
directions for future work.

2 Methodology

The study was performed using a modified commercial
C/C++-compiler from IAR Systems [7]. This provided us
with a C parser suitable for handling embedded programs
(including extended keywords etc.), and a source-level
optimizer.

Each program (both embedded and SpecInt95) was
compiled for its expected hardware platform. For the
SpecInt95 benchmarks, we used settings corresponding to
a generic 32-bit CPU. For the embedded programs, we
used settings corresponding to the target platform for the
programs.

Embedded systems compilers usually implement
various extensions to the standard C language. Since each
of our embedded systems programs is written for a speci-
fic compiler and a specific hardware platform, the com-
piler has to mimic the C variants used by several different
compilers. For an example of typical features present in an
embedded systems compiler, see the documentation for
the IAR compiler [8].

In order to imitate a certain compiler for a certain
hardware platform, the following settings in the compiler
were changed:
§ The size of the int type and the double type, and the

various pointer types (code pointers, data pointers,
pointers to different memory areas). For all embedded
CPUs, int was set to 16 bits. Most pointers were also
16 bits. For the SpecInt95 programs, int and pointers
were 32 bits.

§ Keywords for modifying variable placement in
memory (near, far, huge, banked,...), function calling
conventions (interrupt, trap, monitor,...), and simi-
lar features used by embedded systems programmers.

§ The list of Intrinsic functions used in the compiler.
Intrinsic functions are very important for embedded
systems compilers. An Intrinsic function invocation

looks like a regular function call in the source code,
but the generated code is a short sequence of
assembly language. It is used to give C programmers
access to interrupt handling and other special features
of the hardware – without having to use inline
assembler. Eleven of the studied embedded programs
used intrinsic functions [3]. We ignore the code
supposed to be generated by the intrinsic functions,
but record that we have seen an intrinsic function call.

We collected our measurements at the intermediate
language level, after parsing and basic source-level
optimizations. This is motivated by the following:
§ Analysis at the intermediate code level allows us to

analyze the essential properties of the program, not
the accidental properties of the syntactical represen-
tation. We are not interested in indentation, variable
naming, while-loops vs. for-loops, and similar issues,
since this does not affect the automatic analysis
techniques (and programming tools) considered for
this paper.

§ The basic optimizations remove obvious clumsiness
from the code: all constants have been folded, all
expressions have been reordered in a canonical man-
ner, etc. This makes it easier to compare programs
written in different styles.

Furthermore, there are some factors indicating that
source code analysis may give incorrect results:
§ Many programs used in embedded systems are

machine-generated, which (usually) makes them ugly
and hard to read. The structure is often not such that a
human would (should) write, e.g., using gotos, very
large functions, switch for all decisions, and some
other simple-to-generate but hard-to-read structures.
Making statements about such source code is not very
sensible.

§ Many of the industrial programs we have analyzed,
were obfuscated – all function names and variable
names were changed to meaningless combinations of
digits and letters. More advanced obfuscators can
even rewrite the code structurally (for example,
rewriting loop constructions). Studies based on the
source level style and syntax are irrelevant in this
case.

Finally, performing the analysis after parsing and
optimization makes our task simpler, since we do not have
to handle program errors, and the parsing and optimization
process simplifies the code. The intermediate language is
much simpler than the C language (it uses a small number
of well-defined operations and has an explicit control
flow). However, the intermediate code is still quite far
away from assembly-language, and is the same for all
target processors, thus easing the task of comparing
programs written for different target platforms.

Because of obvious space constraints, this paper only
presents the results of measurements relevant for demon-
strating differences between SpecInt95 programs and
embedded real-time programs. The measurement results
for the embedded programs are available as a technical
report [2].

Furthermore, this study is limited to measurements that
can be performed without extensive data and control flow
analysis. This is both because such analyses are expensive
to implement, and because the most interesting measure-
ments require whole-program analysis, which is not
possible in our present framework.

The data collected is relevant for indicating the
presence of certain features in the studied programs.
Furthermore, comparisons on the frequency of presence of
certain features are relevant (statements like “feature X is
twice as common as feature Y”).

3 Studied Programs

The application areas from which the embedded
programs originated were telecommunications, vehicle
control, and home and consumer electronics. Unfortuna-
tely, due to non-disclosure agreements, we cannot name
the companies involved, only present the results.

In the studied programs, there is a mix of timing critical
code (including control loops, protocol management,
coding and decoding) and non-timing critical code (e.g.
user-interface and initialization code).

In total, our embedded systems programs consist of 13
different applications with a total of 334 600 lines of C
source code (excluding comments). Note that the prog-
rams are written for freestanding C-implementations, i.e.
the programs only use the libraries which do not need
operating system support. The source code of the libraries
are not part of the study.

The SpecInt95 programs used in the study were the
following:
§ 099.go: a go-playing program.
§ 124.m88ksim: a Motorola 88000 CPU simulator.
§ 129.compress: a small file compression utility.
§ 130.li: a lisp interpreter.
§ 132.ijpeg: a JPEG compressor.
§ 134.perl: a PERL interpreter.
§ 147.vortex: an object-oriented database.

The total size of these programs are about 97 000 lines
of source code excluding comments.

We were not able to get 126.gcc to compile, since it
required libraries not available on an embedded system,
and the code was hard to push through our very picky C
parser. Furthermore, including gcc would have skewed the
results, since it is about the size of the other SpecInt95
programs combined.

4 Variables

We have examined the variables defined in the
programs, i.e. the variables actually coded into the
programs. Variables that are only declared, like hardware
I/O addresses and operating system entities, are not con-
sidered. In the embedded programs, we found approxi-
mately 17 200 variables (one variable per 20 lines of
code), and in the SpecInt95 programs, about 19 700 (one
variable for every five lines of code).

4.1 Variable Types and Data Allocation

We divided the variables into six categories: integer
variables, floating point variables, structures and unions,
arrays, data pointers, and code pointers. The frequencies of
occurrence of the type categories in the SpecInt95 and
embedded programs are shown in Figure 1.

The most noticeable difference is that the SpecInt95
programs use more pointers than the embedded programs,
and that arrays and structures are more common in the
embedded programs. Also note that code pointers are very
rare, both in embedded applications and in SpecInt95.
Furthermore, it is clear that both the considered SpecInt95
and embedded programs are integer programs. Almost no
floating point variables are used.

54.7%

0.5%

3.5%

3.1%

0.3%

56.1%

9.9%

11.8%

22.0%

0.2%

38.0%

0.0%

0% 10% 20% 30% 40% 50% 60%

Integer

Float

Struct/Union

Array

Pointer

Code Pointer

Embedded
SpecInt95

Figure 1: Distribution of variables across types

From the distribution of variable types and observations
regarding the use of library functions and operating system
calls, we draw the conclusion that the SpecInt95 programs
use dynamic memory allocation for data, while the
embedded programs allocate their data statically (as
variables). This is consistent with the expectations of
practitioners in the field [9].

This conclusion is based on (1) the larger number of
data pointers and smaller number of structs and arrays in
the SpecInt95 programs, and (2) that all SpecInt95
programs use the malloc() library call, while none of the
embedded programs use malloc(), and only five of the

embedded programs use operating-system dynamic
memory services.

There are several explanations for why embedded
programs use dynamic memory only sparingly. The first is
the scarcity of memory in embedded systems (sometimes
only a few hundred bytes of RAM are available). The
second is the fact that most systems are quite static: data
and code are stored in ROM, and the need for dynamically
adjusting the data size is very small. Third, dynamic
memory management makes the system less predictable,
and predictability is usually very important for embedded
systems [10].

4.2 Integer Variables

We consider the types of the integer variables in a
program to be a good indicator of the size of data items the
program processes. In order to investigate this, we have
analyzed the types of the integer variables along the
following two orthogonal axes:
§ The size of the variable: char (8 bits), short (16 bits),

or long (32 bits)2

§ The signed or unsigned interpretation of the variables.

The results are shown in the two contrasting diagrams
in Figure 2. The differences are striking:
§ Embedded programs use mostly (97 %) 8-bit and 16-

bit data. SpecInt95 programs use mostly 32-bit data
(98 %).

§ Embedded programs use a much higher proportion of
unsigned variables: 87 % are unsigned, while only
47 % of the SpecInt95 variables are unsigned.

Embedded

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

unsigned 70.8% 14.0% 2.1%
signed 2.7% 9.4% 1.0%

char short long

SpecInt95

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

unsigned 1.3% 0.4% 44.9%
signed 0.0% 0.3% 53.1%

char short long

Figure 2: Contrasting integer types

The difference is to a large extent due to the different
target machines: on a large 32-bit machine, an int maps to
a machine register, and is the natural size for any numeric
value. On an 8-bit embedded machine, the natural size is a
byte (byte variables are declared as char or unsigned

char), and only variables that do not fit in a byte are
declared as short or long. Furthermore, most I/O unit

2 We do not consider 64-bit processors, where long would be 64
bits in size.

interfaces use 8-bit values, which makes char variables
appropriate for hardware interfacing.

The embedded programs rarely use the plain int type.
Most of the code use macros designed to generate a
variable of a particular size: BYTE for eight-bit values, WORD

for sixteen-bit values, etc. Embedded systems program-
mers typically want precise control over the size of their
variables.

Our conclusion is that handling small data items
efficiently is much more important for embedded systems
tools (and especially compilers) than for desktop systems
tools.

4.3 Variable Scopes

Another contrast was found when we studied the scopes
of program variables: embedded programs have a much
higher proportion of global and static variables than the
SpecInt95 programs. Figure 3 shows the distribution of
variable scopes in detail.

7.5%

0.8%

47.1%

44.6%

27.5%

4.8%

38.7%

29.0%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Global

Static

Auto

Parameters

Embedded
SpecInt95

Figure 3: Distribution of variables across scopes

Parameters are variables declared as parameters in
function headers. Auto variables are variables local to a
function (on a desktop system, they are typically allocated
on the stack). Static variables are local variables declared
with the static keyword, which means that they maintain
their value between function calls, and that they are stored
in static memory (together with the global variables)3.
Global variables are declared in the global scope, outside
of functions.

Figure 3 shows the statistics on the number of variables
in each scope. A different picture emerges if the amount of
data in each scope is considered. As shown in Figure 4,
most of the data is kept in global scope, both in the
embedded programs and the SpecInt95 programs. How-
ever, local data is more important in the SpecInt95 prog-
rams, which could indicate a different programming style.

Furthermore, the global data exhibits a different type
signature from the local data (both for embedded and
SpecInt95 programs). About 30 % of the global variables

3 Variables static to a file are considered to be global variables,
since they do not belong to a certain function.

are arrays, compared to only one or two percent of the
local variables. Pointers are much more common in the
local scope than in the global scope. For the embedded
programs, structures are six times as common in the global
scope compared as in the local scope (for SpecInt95,
structures are equally common locally and globally).

Distribution of data scopes

77,4%

1,8%

18,4%

2,4%

87,5%

2,1%

6,8%

3,6%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Global

Static

Auto

Parameters

Embedded
SpecInt95

Figure 4: Distribution of data across scopes

The conclusion is that both embedded and SpecInt95
programs store large data globally. This trend is more
pronounced for the embedded programs, especially for
structures.

Embedded programs also use more global and static
variables in general. This might be due to the fact that
embedded compilers traditionally are weak in handling
local data. Making a variable static or global has been
more efficient than making it local, since stack handling is
painful on most small machines. The compilers have not
been capable of allocating a local variable statically4,
which has forced the programmers to code the static

explicitly. Deficient tools have affected the style of
programming.

5 Operations

The mix of operations used in the programs provides
additional indications on how embedded programs and the
SpecInt95 programs differ from each other.

We have classified the operations present in the
intermediate code of the analyzed programs into the
following categories:
§ Logic: shifts, and, or, xor, and bitwise negation (not).
§ Compares: comparison operations used for making

decisions. Equality, inequality, greater than, etc.
§ Arithmetic: addition, subtraction, multiplication,

division, modulo, and negation.

4 Allocating local variables and parameters statically is
equivalent to imposing FORTRAN calling conventions on C, and
requires careful analysis to avoid run-time errors. In theory, a
compiler could determine when a variable does not need to be
stored on the stack and allocate it in static memory, but to our
knowledge, no compiler performs this optimization.

§ Pointer operations: array indexing, access to structure
members, etc.

Note that we have ignored branches and jump
instructions. This is because the number of branches is
highly dependent on the compiler and the target hardware:
branches are accidental properties. For example, the
presence of conditional moves, predicated instructions (as
on the ARM [11]), or instructions to calculate with flags
(as on the PowerPC [12]) drastically affects the number of
branches in the code, without changing its meaning.

Also note that it is quite meaningless to reason about
the number of loads and stores at the intermediate code
level. The need for loads and stores is determined by the
target architecture and can only be measured after code
generation, which makes comparisons across hardware
platforms meaningless.

43.55%

25.77%

25.74%

4.94%

52.80%

12.70%

23.11%

11.39%

0% 10% 20% 30% 40% 50% 60%

Pointer

Arithmetic

Compares

Logic

Embedded
SpecInt95

Figure 5: Distribution of operation categories

Figure 5 shows the result of the measurements. Note
that pointer operations comprise about half of all opera-
tions, emphasizing how important good pointer handling is
for a compiler (since many of the pointer operations can
be removed during code generation). We are quite sur-
prised to find that compares constituted a quarter of all
operations, leaving only 25 % for the arithmetic and logic
operations.

The most important difference between the embedded
programs and the SpecInt95 programs is the use of
arithmetic and logic operations. In embedded programs,
logic and arithmetic operations are equally common, while
the SpecInt95 programs use arithmetic operations five
times as often as logic operations.

This is not surprising: much of the work in embedded
systems is performed by testing, setting, and clearing bits
in hardware registers.

Another contrast is that 70 % of the operations in
embedded programs operate on unsigned values. Only
20 % of the SpecInt95 operations are unsigned. This is
consistent with the data on the integer variable types
presented in Section 4.2. Embedded programs tend to use
unsigned data and operations.

The conclusion is that (to put it drastically) embedded
programs manipulate bits while SpecInt95 programs
calculate values, and that actual calculations and mani-

pulations are a minority compared to operations needed to
address data and make decisions.

6 Functions

We have examined the defined functions in the
programs, i.e. the functions whose bodies are present in
the studied source code. The size of the sample was 2 713
(an average of 36 lines of code per function) functions for
SpecInt95, and 5 597 functions for the embedded
programs (an average of 60 lines of code per function).

6.1 Return Types

The return types of functions are distributed as shown
in Figure 6. The categories are the following:
§ Void: no return value.
§ Ptr: data pointer.
§ Ulong: unsigned long (32-bit) integer value.
§ Long: signed long value.
§ Ushort: unsigned short (16-bit) value.
§ Short: signed short value.
§ Uchar: unsigned char (8-bit) value.
§ Char: signed char value.

Note that float, struct, and function pointers all had a
frequency less than 0.5 %, and were left out of the graph
in Figure 6.

0.5%

0.2%

48.4%

2.2%

17.1%

31.2%

0.8%

31.6%

1.6%

3.3%

0.3%

0.5%

59.4%

2.0%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%

char

uchar

short

ushort

long

ulong

ptr

void

Embedded
SpecInt95

Figure 6: Distribution of return types for functions

The conclusion is that SpecInt95 functions return
values twice as often as embedded functions, and that the
return types are larger (mostly longs and pointers). The
embedded functions typically do not return values (60 %),
and the returned values are small, predominantly of type
(unsigned) char.

51.0%

11.5%

5.4%

2.0% 1.4% 0.5% 0.2% 0.3%

7.6%

27.0%

15.5%

9.5% 9.9% 10.3% 9.2%
6.3%

4.6%

27.8%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

0 1 2 3 4 5 6 7 more

Embedded
SpecInt95

Figure 7: Relative frequency of parameter counts

No return

Return value

No Params

Parameters

0%

5%

10%

15%

20%

25%

30%

35%

Embedded function signatures

Figure 8: Value-returning and parameter-taking of
embedded systems functions

6.2 Number of Parameters

The parameter lists of the functions were studied in
order to determine the number of parameters to functions.
The result is shown in Figure 7.

One striking result is that 51 % of the embedded
functions take no parameters at all! Combined with the
information above on function return types, we obtain the
diagram in Figure 8. Note that 35 % of the embedded
systems functions neither take parameters nor return a
value, compared to only 3.5 % for the SpecInt95
programs.

This means that many functions in the embedded
programs only perform side effects. There are several
possible explanations for this fact5:
§ Many functions simply perform some fixed task, like

stopping a motor or turning a light on, which does not
require parameters and does not produce any values.

§ In the case of multithreaded programs, each function
may be a separate process, which communicates with
other processes using shared memory or message
passing. Such functions cannot use the parameter
passing and return value mechanism.

§ The functions read or write global data instead of
using the parameter and return value mechanisms in
C. This could be an efficiency optimization (on some
CPUs, putting parameters on the stack is very
inefficient both in terms of code and data size, and
execution-time). It does not automatically indicate
bad software engineering, which is a common
reaction from desktop programmers faced with this
fact.

Finally, there are some observations of special interest
for compiler writers:
§ In the embedded programs, allowing just three bytes

of function parameters to be passed in registers would
cover 87 % of all functions. For the SpecInt95
programs, 24 bytes, or six 32-bit registers, are needed
to cover 90 % of all function parameter lists.

§ The average size of a function argument is four bytes
in the SpecInt95 programs. The average for embedded
programs is just 1.6 bytes.

Our conclusion is that SpecInt95 programs tend to use
proper functions: functions that take parameters, perform
calculations, and return values, while embedded programs
tend to use functions that do not return values or take
parameters.

6.3 Complexity

In our original study of embedded programs [2], one of
the most interesting results is that most functions have a
rather simple control-flow. Four out of five functions do
not contain loops, and one third of the functions were
trivial (they consisted of a single basic block).

For the SpecInt95 programs, the results are different:
only one sixth of the functions are trivial, while the
complex functions (functions containing loops) make up
one third of the total. Only two out of three functions are
non-looping (compared to four out of five for the
embedded programs).

5 The explanations are based on experience and browsing through
the source code. It is very hard to automatically analyze a
function’s behavior to determine whether it performs output to
hardware: we cannot identify hardware registers accurately. It is
also hard to determine whether global variables are used instead
of parameters and return values, since this implies understanding
the intent behind the code.

Figure 9 shows the comparison graphically. Trivial
functions contain no decisions, non-looping functions
contain decisions but no loops, and complex functions
contain loops. Usually a complex function contains
decisions, since the loop condition is a decision – unless
the loop is non-terminating.

32.7%

47.9%

19.4%
16.2%

48.1%

35.7%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

Trivial Non-looping Complex

Embedded
SpecInt95

Figure 9: Distribution of function complexity

The conclusion is that embedded programs contain
more simple functions than the SpecInt95 programs. The
SpecInt95 programs appear to be slightly more complex.

7 Other Measurements

The total number of measurements performed is quite
large. Above, we have provided details on the most
interesting differences between our set of embedded
programs and the SpecInt95 programs. In this last section
dealing with our measurements, we will discuss some less
significant measurements.

7.1 Loops

Several measurements were performed on loops and
loop nests:
§ Non-terminating loops: there is only one non-

terminating loop in the SpecInt95 suite6 (compared to
44 in the embedded programs). This was expected,
since embedded programs are usually built from tasks,
where each task has a non-terminating function as its
body. The SpecInt95 programs, in contrast, are
usually designed to perform some calculation and
then terminate.

§ Loop nesting depth: the depth of loop nesting was
slightly larger in the SpecInt95 programs. 91 % of the
loops in the embedded programs are singly nested,

6 It was the main() function for m88ksim. The CPU simulator
was coded to run until the user interrupts the execution.

while only 79 % are singly nested in the SpecInt95
programs. SpecInt95 loop nests are a little deeper than
the embedded loop nests on average.

§ Loop complexity: the number of basic blocks in loops
and the number of extra exits (break-statements) were
counted. The embedded programs and the SpecInt95
programs did not differ significantly.

7.2 Decisions

A decision nest is a nest of if and switch statements.
We measured the depths of the nests, as an approximate
measure for the decision-making complexity of the
programs. No significant difference between the
embedded programs and the SpecInt95 programs could be
found.

Looking specifically at the switch statements, we note
that they are far more common in the embedded programs.
Switches are present in 5 % of the decision nests in the
SpecInt95 programs, and in 20 % of the decision nests in
the embedded programs.

8 Conclusions and Future Work

We have measured a large sample of commercial
embedded and real-time programs, and compared the
results to the same measurements performed on the
SpecInt95 [1] benchmark suite. We have studied the static
properties of the program code, which are more relevant
than the dynamic properties for comparing and evaluating
programming tools (especially program analysis tools).

Programs from SpecInt95 (and older SpecInt suites) are
often used to evaluate programming tools, for both
desktop systems and embedded systems. However, the
comparisons in Sections 4 to 7 above indicate that the
static properties of the SpecInt95 programs are quite
different from those of real embedded programs.

Our conclusions are the following:
§ It is dangerous to assume that comparisons between

and evaluations of programming tools based on
SpecInt95 programs give results relevant for
embedded systems.

§ There is a need for benchmarks that are more
representative for embedded systems.

Embedded systems benchmarks would need to address
the characteristics of embedded programs. In this paper,
we have presented a number of points where embedded
programs differ from desktop programs:
§ The size of variables: embedded systems use variables

tightly tailored to fit the data manipulated. Char

variables are frequent, larger data types are used only
when absolutely needed.

§ Unsigned data dominate over signed data.
§ Logical operations are more common (especiallly in

relation to ordinary arithmetic).

§ Many functions perform only side effects.
§ Global data is used more frequently, both for

variables (data which is changed at runtime) and large
constant data7.

§ Direct interfacing to hardware is very common.
§ Dynamic memory allocation is rarely used.
§ Only the parts of the C libraries requiring no opera-

ting system support are used. The most notable
omission is file handling.

In the future, we expect to use the information from this
study to guide our research on worst-case execution time
tools (and other programming tools for embedded
systems), as detailed in [3].

We also plan to continue measuring other sets of
programs, and comparing the results with our results for
embedded programs and SpecInt95 programs.

The new EEMBC benchmark suite [13] is an attempt to
provide the embedded systems world with an equivalent of
the desktop systems’ Spec benchmarks. Unfortunately,
these benchmarks were released too late to be incorporated
into the round of measurements presented here, but we
plan measure them when the source code becomes
available to us.8

It will be interesting to see how well the EEMBC
benchmarks reflect our characterization of embedded
systems. However, our guess is that we really need several
sets of benchmarks depending on the capabilities of the
target system. It seems very hard to construct a benchmark
that can reasonably be used both on an 8051 [14] (no
stack, small memory, horrible instruction set) and on an
ARM [11] (fully modern RISC, large memory, good stack
handling).

Acknowledgements

I would like to thank the following people for their
help: Thomas Lundqvist at Chalmers, for helping me
measure the SpecInt95 programs and for his ideas on what
to measure. Andreas Ermedahl at DoCS for discussing the
results and patiently listening to my explanations of each
exciting new graph to come out of the printer. My advisors
Hans Hansson and Bengt Jonsson for commenting and
proofreading this paper. Sang Min and Mikael Sjödin at
DoCS and David Whalley at Florida State University for
commenting on drafts of this paper. Carl von Platen,
Anders Berg, Dan Hammerlid, and Mats Kindahl at IAR
Systems for their opinions on what would be interesting to
measure. IAR Systems for letting us use their compilers as
research tools. Finally, the anonymous reviewers of

7 The observation that many global variables are actually
constants is based on experience and reading the code of our
embedded programs.
8 Unfortunately, the EEMBC consortium cannot provide a
research license for their code, so we have to find a sponsor to
pay the license fees they require.

various versions of this paper has improved its focus and
relevance.

This work has been performed with support from the
Advanced Software TEChnology Center (ASTEC) [15],
the Swedish National Board for Industrial and Technical
Development (NUTEK), and IAR Systems [7].

References

[1] Homepage for SPEC (The Standard Performance Evaluation
Corporation): http://www.spec.org.

[2] J. Engblom: Static Properties of Commercial Real-Time and
Embedded Systems – Results from the MARE Project,
ASTEC Technical Report 98/05, Uppsala University,
October 1998. Available on the web:
www.docs.uu.se/astec/Reports/tr_index.shtml.

[3] J. Engblom, “Static Properties of Commercial Embedded
Real-Time Programs, and Their Implications for Worst-
Case Execution Time Analysis”, To be published in
Proceedings of the Fifth IEEE Real-Time Technology and
Applications Symposium (RTAS ‘99), IEEE Computer
Society Press, June 1999.

[4] V. Seppänen, A-M. Kähkönen, M. Oivo, H. Perunka, P.
Isomursu, and P. Pulli: Strategic Needs and Future Trends
of Embedded Software, TEKES Technology Review 48/96,
1996. To order, check http://www.tekes.fi.

[5] D. C. Lee, P. J. Crowley, J-L. Baer, T. E. Anderson, and B.
N. Bershad: “Execution Characteristics of Desktop
Applications on Windows NT”. In Proceedings of the 25th
Annual International Symposium on Computer Architecture,

published as ACM SIGARCH Computer Architecture News,
Vol. 26, No. 3 (June 1998), Pages 27-38.

[6] J. Lampe: “Statistics about Modules of the Oberon System”,
Software-Concepts and Tools, (1997) 18, Springer Verlag,
pp. 27-34.

[7] Homepage for IAR Systems: http://www.iar.com.

[8] Information about the IAR Systems 68HC11 compiler:
www.iar.com/download/ew6811.pdf.

[9] N. Jones: “Efficient C code for eight-bit MCUs”, Embedded
Systems Programming Europe, Miller Freeman Ltd,
London, February 1999, pp. 18–30.

[10] D. Lafreniere, “An efficient dynamic storage allocator”,
Embedded Systems Programming Europe, Miller Freeman
Ltd, London, November 1998, pp. 34–42.

[11] ARM7 Data Sheet, ARM DDI 0020C, Advanced RISC
Machines Ltd, December 1994.

[12] PowerPC Microprocessor Family: The Programming
Environment For 32-Bit Microprocessors, Rev 1. Order No.
MPCFPE32B/AD, Motorola Inc, January 19997.

[13] Homepage for the EDN Embedded Microprocessor
Benchmarking Consortium: http://www.eembc.org.

[14] MCS 51 Microcontroller Family User’s Manual, Order No.
272383-002, Intel Corporation, February 1994.

[15] Homepage for ASTEC: http://www.docs.uu.se/astec.

