
TRANSPORTING BUGS WITH CHECKPOINTS

Jakob Engblom

Wind River, Stockholm, Sweden. jakob.engblom@windriver.com

ABSTRACT

Virtual platform checkpointing is a technology by which the
entire state of the software and hardware of an executing
system is captured. Checkpoints can be used for many
different purposes during software (and hardware)
development. Here, we focus on how they are used to
transport bugs between bug reporters and developers.
Compared to describing the system state and steps needed to
reproduce a bug using natural language in a bug tracking
system, checkpoints provide an executable and complete
description of the system state. Together with tools that let
us reproduce the final steps to provoke a bug, we get a
system that can precisely and efficiently transport bugs from
a bug reporter to the responsible developers.

Index Terms— Debugging, virtual platform,

checkpointing, bug reporting

1. INTRODUCTION

One of the hardest problems in debugging is to correctly and
reliably reproduce a bug found by someone else. Typically,
test departments and other users of software create long and
brittle “instructions to reproduce the error” in bug tracking
systems. Accompanying the bug report is a list of relevant
facts such as the version of the software, the OS version on
the machine, the nature of the hardware, any attached
external hardware, and anything else deemed relevant.

More often than not, the developer has to iterate a series
of questions with the reporter to get more information about
the system where the bug manifest itself and the precise
steps taken to cause the bug to trigger. Such iterations can
take days for a globally distributed development effort. The
questions are often hard for the reporter to answer in the
way the developer wants. In some cases, developers can do
remote logins to the failing system in order to get their
hands on the precise failing setup, but more often than not
this is not possible due to security restrictions or the fact that
the failing system is no longer available or has been used for
some other important test. For embedded systems the
problem gets compounded by the availability of the precise
hardware needed to run the software and reproduce a bug.

A crucial aspect of bug reporting is the reproduction of
the issue. If the developer fails to reproduce the bug in a
report, it is usually impossible to fix.

This paper describes our experience in using virtual
platform checkpointing to transport bugs from a reporter to
a developer in order to achieve both reliable bug
reproduction and ease of investigation.

We assume that both the bug reporter and the developer
have access to a virtual platform of the target system, and
using it for software development and test. The reporter runs
the software on the virtual platform and hits a bug. By using
a checkpoint of the combined hardware and software state,
the reporter provides the complete target system state to the
developer, as illustrated in Figure 1 (the person with the “D”
shirt is the developer, and the “R” shirt is the reporter). With
the checkpoint R, the developer can reliably reproduce the
issue and investigate the state of the failing system. This is
easy in principle but requires some thought in practice.

Figure 1 Basic Concept

Note that in all figures in this paper, the meaning of the
“disk icon” and “board icon” encapsulates any kind of
information added when working with software and
hardware. For software, this would mean creating a binary,
loading it onto a target, configuring it, and simply running
it. For hardware, it would both mean the initial hardware
setup of the virtual platform, as well as any changes and
configurations done to the virtual hardware.

2. TECHNOLOGY BACKGROUND

2.1. Virtual Platforms

The basic requirement for the proposed approach is that
there is a virtual platform (VP) available for the target
system. Virtual platforms are currently becoming a natural

R

R

D

Virtual
platform

D

checkpoint

software package, load, or configuration

hardware configuration or reconfiguration

PP

part of the development process for embedded systems,
thanks to the flexibility they bring by decoupling hardware
and software development. In many cases, VPs offer debug
and development environments superior to physical
hardware systems. Among the more interesting VP features
are checkpointing and determinism, which form the basis
for the work presented in this paper.

We have been using virtual platforms built using Wind
River Simics (http://www.windriver.com/products/simics/).
Simics has been used since the late 1990s to develop
software for complex hardware-software systems [1].
Simics is capable of providing virtual platforms for anything
from small single-processor embedded controllers up to
complex multicore, multiboard, rack-based clusters [1],
running target software quickly enough to be useful for
large-scale software development [2].

For embedded systems, an important advantage of
virtual platforms is that they are available anywhere, in any
number, and any point in time. This makes it feasible for the
reporter and developer to share the same hardware setup
without shipping development hardware around the globe.
Such common hardware ground certainly aids debugging.

To facilitate software development, there is no need for
the virtual platform to be timing and pin-level accurate to
the actual target – indeed, the only way to create a virtual
platform which is fast enough to afford software
development is to simplify the timing and use transaction-
level modeling. Virtual platforms built in this style have
been used for software development for at least 40 years [4].

It is important to note that a VP does not have to be a
complete and perfect model of the hardware system to be
useful for the task of testing and debugging software and
transporting bugs. The VP needs to be complete enough to
make the software happy, but that requirement is usually
met by something short of a complete model. For example,
using a virtual development board with a particular SoC
plus memory and networking, running the same operating
system as the actual target is often sufficient. Parts of the
target system can be stubbed out or replaced with traffic
generators [3].

2.2. Checkpointing

Checkpointing means storing the state of the virtual
platform target to disk. The checkpoint can later be loaded
into a fresh virtual platform session, resulting in the exact
same target system state. Checkpoints include the contents
of memories and disks, the state of processors, peripheral
devices, and network connections in the virtual system. The
checkpoint also needs to store some parts of the simulation
kernel state, such as the current time and any event queued
for later execution. Checkpointing has been implemented in
various ways for a range of virtual platform systems, with
the first successful implementations taking place in the mid-
1990s [6][7][8][9][10].

For bug transportation, a crucial aspect of the
checkpoint is that it contains the software state of the target
system. When a checkpoint is taken, software can be loaded
into memory, executing inside a processor, or residing on a
disk. It does not matter, as all system state is captured in the
checkpoint, affording the developer full insight into the
software setup involved in the reporter’s bug.

 There is no need for the reporter to figure out the
precise versions of the software they are using. When a
developer has a checkpoint, it is possible to investigate any
aspect of the software setup, without round-trips to the
reporter. Examining the contents of the checkpoint can
require the developer to run the virtual platform, potentially
changing its state. However, by making checkpoints read-
only, the checkpoint contents is preserved and the developer
is able to go back to a pristine state any number of times
[11].

For efficiency, checkpoints need to be differential so
that each checkpoint only stores the changes to the system
state since the previous checkpoint was taken. Without this
optimization, checkpoints very quickly become
unmanageably large. Another optimization is to only store
the memory areas which are actually in use in a system. This
means that even if a target system has many gigabytes of
RAM, the checkpoint (and Simics memory usage on the
host) might only be a few hundred megabytes if that is all
the memory that is being used.

2.3. Checkpoint Portability

In order to actually transport bugs and not just reproduce
them on the machine where they were generated (which is
certainly useful), checkpoints have to be portable across
hosts, across time, and across virtual platform software
versions. In practice, the developer and the reporter can
have very dissimilar systems, typically differing in the
operating system version, size of memory, number of
processor cores, and maybe even in word length and
endianness. Simics checkpoints are designed to achieve such
portability, but this is not necessarily the case for all
checkpoint implementations [7][10]. See previous work for
more details on the Simics checkpoint implementation [6].

One particular aspect of checkpoint portability and
transportability is that they do not contain session state such
as breakpoints or debug information. Neither do they
contain the code for the hardware models used, that has to
be provided separately to each user of a VP. However, the
size of the code of a typical VP is far less than 100 MB,
often less than 10 MB. Essentially, checkpoints only encode
the target system state and nothing else [6][9].

2.4. Determinism

In a deterministic virtual platform system, the target system
will execute in the exact same way each time a checkpoint is
loaded. The checkpoint provides a fixed initial state for the
simulation, and determinism guarantees that the execution is

http://www.windriver.com/products/simics/

the same each time the checkpoint is opened. Thus, the
reporter and the developer will see the same execution
(starting from the checkpoint), and reproduction of a bug
becomes trivial. Without determinism, the value of VPs and
checkpoints is greatly reduced.

3. PRACTICAL CHECKPOINTING USE

Working with checkpoints for the last decade has shown us
that best practices can greatly enhance their effectiveness
and efficiency.

The first issue is to bring down the size of the
checkpoints which are transported. Even though networks
are fast, moving gigabytes of data over long distances is a
painful exercise. Bandwidth is an issue between different
organizations and different geographical locations of the
same company. Therefore, just blindly recording all the
system state in a checkpoint might result in a blob of data
that is so large that it is practically useless. Obviously, the
data in a checkpoint should be compressed, but compression
is in general not enough.

3.1. Shared Platform Software

Thankfully, the way products are developed helps us.
Usually, there is some kind of basic platform software (often
created by a platform team) which really does not need to be
included in the checkpoint as it is already available to the
reporter and developer.

Figure 2 Workflow with a shared platform

The resulting workflow is shown in Figure 2, adding a
lot of details compared to Figure 1. The platform team (with
the “P” shirt) distributes the platform software set (the disk
P) to the developer and the reporter. The reporter constructs
the system to be tested by combining P with the software
from the developer (disk D), and possibly some local
configuration or input set (disk R). When a bug is found,
only the difference from the platform software needs to be

reported, and thus the checkpoint R which is sent to the
developer only contains the changes made by R (including
the loading of the developer’s software onto the target).

In Simics, the sharing of common software is
implemented by allowing checkpoints to depend on static
read-only disk images. The current state of a disk or
memory in the virtual platform is found by starting with an
external file (the static disk image) and then adding the
differences specified in the checkpoint. The user of the
checkpoint tells Simics where to find the static images.

Note that Figure 2 also introduces the hardware
configuration of the VP. In this case, all users use the same
virtual hardware configuration (board P), but this is not
always the case as discussed below.

3.2. Nightly Boot

In the previous scenario, the platform team provided
software images to the other teams. This is a fairly
inefficient way to work with a virtual platform, however.
Each user has to spend their own time booting the VP, and
runs the risk of not having quite the same configuration as
other users. One way of solving this is to extend the concept
of a “nightly build” to also encompass a “nightly boot”.
Essentially, the platform team provides a ready-to-use
booted system checkpoint containing both the hardware and
software configuration.

Figure 3 Nightly boot workflow

Figure 3 shows a nightly boot workflow. The target
system is booted once by the platform team, and the
resulting checkpoint P is distributed to the other teams. The
platform team takes control of the hardware configuration to
be used by the other teams. D and R receive the virtual
platform hardware configuration as part of the checkpoint.

In practice, there can be many checkpoints P produced,
each one for a certain hardware/software configuration. For
example, in a rack-based system, there might be a set of

R

R

Virtual
platform

D

P

P P

P +

D

D +

R

Bug state

P + D
Target system
state for testing

P
P

P

P + P +

D

P

R

R

R

R

Virtual
platform

D

P

P + D +Bug state

P

P +

D

P

R

R

P P

D

P D R

board configurations. Each configuration would target
certain software development areas, such as control plane
software, DSP software, or operations and management
software, and only include the boards and software needed
for each case. Configurations might also mix in boards from
previous generations of hardware, in order to test backwards
compatibility of new software.

 The development team adds its software to the system
configuration given by the checkpoint P, generating a new
checkpoint D, which is then used by the reporter. The final
checkpoint R builds on all the previous checkpoints – but it
only contains the changes from checkpoint D, making it
fairly compact. Most of the information would be contained
in the checkpoint P.

Figure 4 Nightly boot with reporter loading developer software

Another workflow variant is shown in Figure 4. Here,
the reporter first modifies the hardware configuration of the
virtual platform and then loads the developer’s software in
order to test it. This is a fairly common operation in testing.
Bugs can be triggered by actions like reconfiguring the
virtual platform network, injecting faults into the target
system, or adding nodes to network. All such changes are
captured in the checkpoint, making it much easier for the
developer to reproduce and understand the bug.

Imagine the work needed to replicate such a test on
physical hardware: you would go to the lab, find the
appropriate pieces of hardware, and load the specified
software. Then, after a precise amount of time, pull a
network cable and insert it into a different port. Wait
another precise amount of time. Power up a second board
and connect it to the network. Type a particular sequence of
commands on the new board, and on and on. Reproducing
and describing such sequences of actions is not easy, but a
checkpoint offers an easy way to capture their effects.

3.3. Checkpoint Chains and Checkpoint Merge

Differential checkpoints create chains of dependent
checkpoints. For example, in Figure 3, in order to use
checkpoint R, you also need to have the checkpoints D and
P. This keeps each checkpoint small, but it also means that
when a user creates several checkpoints as part of their
work, you end up with a set of checkpoints that all need to
be sent as part of the bug report. The situation is illustrated
in Figure 5, along with the solution: checkpoint merging.

Figure 5 Checkpoint chains and checkpoint merge

In a checkpoint merge, a single checkpoint is created
which summarizes all the changes in the checkpoint chain.
Normally, the merged checkpoint is smaller than the set of
checkpoints it replaces, as data items that have changed
several times in the checkpoint chain are only represented
by their last values.

In general, the new checkpoint still depends on shared
checkpoints or static disk images (as is the case in Figure 5).
It is possible to create a single “absolute” checkpoint which
does not depend on any other checkpoint or disk image.
This will be a large file, but there are cases where it is
convenient, for example when passing a checkpoint to a
group which does not have access to the right version of the
platform software.

4. SYSTEM STIMULUS

The above discussion has ignored the issue of system input
and how to reproduce the stimulus needed to cause a bug to
occur. In the best case, the bug report checkpoint has
captured the system state after the last relevant stimulus
occurred. Simply running the virtual platform from the
checkpoint will reproduce the bug. In general, however, the
checkpoint has to be followed by some stimuli to the target
in order to trigger the bug.

4.1. No Inputs

When the system stimulus is the hardware and software
configuration itself, capturing the bug in a checkpoint is

R

R

Virtual
platform

D

P

P + D+Bug state

P

P +

D

P

R

R

P P

R

+

D

P R

R

RC

RD

P + D +Bug state P +

D R

R1

R

R1 +

D

P

R1

R2

Rn-1

Rn

+ + RnRn+

P D R1 Rn

RC

checkpoint merge

trivial. Just start the system and let it run. The trick here is to
capture the checkpoint as late as possible, in order to reduce
the waiting time for the developer. To get to a good point in
time, the reporter typically reruns the failing test case,
stopping some time short of the time that the bug occurs.

One example of a no-input configuration is using a test
program with compiled-in input data. Another example is
changing the hardware and software configuration of the
target and booting it (this works surprisingly often). On the
software side, this might be updating an OS kernel, adding a
new device driver, or changing target init scripts. On the
hardware side, changing parameters like clock frequencies,
core counts, or the types of boards used can reveal software
bugs. It is a key strength of virtual platforms that they are
able to vary their configuration to explore a larger space of
possibilities than that offered by physical hardware. In
particular, multicore software tends to be sensitive to
hardware and software configurations [12].

4.2. Internal Inputs

The target system can be driven to a bug state by a stimulus
sequence generated within the virtual platform itself. For
example, traffic generators, fault injection frameworks, or
scripted input can be used to test software [11][14]. Stimuli
sources running inside the virtual platform system have the
distinct advantage that they are perfectly reproducible: they
work in the virtual time of the virtual platform, and each
time they are run, they will produce the same input sequence
with the exact same timing. When stimulus generators use
pseudo-random number generators to generate variable data,
they need to make sure that the state of the random
generator is part of the checkpoint (and that the generators
are considered part of the VP for checkpointing purposes).

Just like for the case of no input, only the checkpoint is
needed to reproduce the bug.

4.3. External Inputs

Inputs can come from tools external to the virtual platform,
including hardware network packet generators and software
running on the same host machine but outside the virtual
platform [14][15]. In general, we cannot assume that
external tools will be able to regenerate a particular input
sequence deterministically and with precise timing, since
they depend on the nature and timing of the host machine.

The solution is to record the inputs from the external
tools, and use these recordings to drive a deterministic
replay of the stimulus sequence following the checkpoint.
Recordings capture the contents of the inputs and the exact
point in virtual time when they appear to the virtual
platform.

Figure 6 shows an example of using a recording. We
also use periodic checkpointing during the execution of a
test. Taking checkpoints at a regular interval means that
there is always a “fairly recent” checkpoint that we can go
back to in order to report a bug. Regular checkpointing is

particularly important for long test runs, where the virtual
platform might run overnight or for several days. Obviously,
you do not want to restart such a run in order to prepare a
bug report.

Figure 6 Periodic checkpointing and input recording

4.4. Spontaneous Input

A fairly special source of asynchronous input is the user of
the virtual platform, typing in the serial consoles of the
virtual target as well as giving commands to the virtual
platform tool itself. More often than not, if a bug is found
during interactive usage, the user has to reproduce the issue
in a way similar to how you would on a physical machine. A
virtual platform has the great advantage that scripting can be
used to precisely build a replay of the input sequence.

Usually, the reporter will start the recreation with a
checkpoint of the system state (since almost all users save a
checkpoint at least after having booted the target), and
create a script issuing target commands and waiting for
target outputs. Building a script is often preferable to just
recording inputs, since the resulting sequence of commands
can be changed to try variants, and used with updated
software for regression testing. Recorded input is tied to the
particular system configuration where the recording was
taken.

The bug report would consist of a checkpoint and a
script that typically opens the checkpoint and then performs
the necessary steps to trigger a bug [11].

Scripts can also be used to decorate and explain bugs.
An ambitious reporter can create scripts that set breakpoints
to catch when the target software reaches certain locations,
wait for certain points in time, or react to target output, and
annotate these events with additional information for the
developer. The bug report thus becomes an executable
interactive session, rather than a piece of static text.

5. RELATED WORK

Hardware trace debugging such as that offered by
GreenHills Time Machine and the Lauterbach debuggers
use special hardware trace units to capture a tape-like
recording of the behavior of a target processor. However,
they only look at the processor (no recording is made of
peripheral devices), have a limited recording time, and offer

R1 Rn-1 Rn

R R

D

PP

boot

P

D

load &
configure test setup

test execution

R2

R stimulus
sequence

RCBug report +

no way to save the absolute state of the target for someone
else to process.

The reverse debugging of gdb 7.x and UndoDB also
builds on a record-replay system. Such reverse debugging
does not offer the ability to transport recordings between
machines, and only apply (by design) to user-level
processes. They are also only available for certain operating
systems.

Regular desktop/server virtual machine systems like
VmWare and VirtualBox offer the ability to snapshot the
state of a virtual machine and move it to another host.
VmWare offers deterministic replay of the target system,
but only for a single-processor targets [16]. Thus, they
provide only part of the solution presented in this paper. The
ReVirt system offers checkpointing and replay of the
execution of multiprocessor systems [17]. It assumes the use
of paravirtual guests rather than unmodified software stacks,
and the checkpoints and recordings do not appear to be
designed for portability. ReVirt does not deal with multiple
machines in networks or hardware changes over the course
of an execution.

Hardware data recorders record the inputs to an
embedded system, such as network packets and other data
streams. They can be deployed in the field or used as part of
product testing. The recordings are replayed in a
development lab in order to reproduce issues found. The
difference from our approach is that it only provides the
inputs and not the target system state, nor does it provide for
determinism in the (re)execution of the system. Note that the
data streams from such recorders can be used with a virtual
platform as a stimulus.

Simics’s reverse execution technology allows a user to
apply reverse debugging to an entire VP including the target
OS. It is a very powerful debugging tool, and a complement
to the use of checkpointing to transport bugs. In particular,
reverse execution helps position the target in a good spot for
a bug-report checkpoint to be created.

6. SUMMARY

This paper has presented our experience in using irtual
platforms and checkpoints to transport bugs from a bug
reporter to a developer. With checkpoints, both the state of
the system where the bug was found and the steps needed to
reproduce the bug can be encapsulated for transportation. In
addition to the checkpoint, there are cases where you also
need to move recorded inputs to the target system to
complete a bug report. Such record and replay can also be
automated using a virtual platform.

Organizations should take advantage of existing data
shared between bug reporters and developers in order to
minimize the need to move large amounts of data around. If
an organization has a defined platform group, it can provide
shared setups involving both hardware and software to both
developers and bug reporters.

7. REFERENCES

[1] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson,
Daniel Forsgren, Gustav Hallberg, Johan Hogberg, Fredrik
Larsson, Andreas Moestedt, Bengt Werner. “Simics: A Full
System Simulation Platform”, IEEE Computer, February 2002.
[2] Mikael Bergqvist, Jakob Engblom, Mikael Patel, and Lars
Lundegard, “Some Experience from the Development of a
Simulator for a Telecom Cluster (CPPemu)”, IASTED Conference
on Software Engineering and Applications, November, 2006.
[3] Jakob Engblom: “Simulating Embedded Hardware for
Software Development”, Embedded Systems Conference Silicon
Valley, San Jose, USA, 17 April 2008.
[4] Kazuhiro Fuchi, Hozumi Tanaka, Yuriko Manago and
Toshitsugu Yuba. “A program simulator by partial interpretation”,
Symposium on Operating systems principles (SOSP), Princeton,
New Jersey, October 1969.
[5] Stanley Gill: “The Diagnosis of Mistakes in Programmes on the
EDSAC”, Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences, Vol. 206, No. 1087, May
1951.
[6] Marius Monton, Jakob Engblom, and Mark Burton,
“Checkpoint and Restore for SystemC Models”, Forum on
Specification and Design Languages (FDL), Sophia Antipolis,
France, 22-24 September 2009.
[7] Stefan Kraemer, Rainer Leupers, Dietmar Petras, and Thomas
Philipp, “A Checkpoint/Restore Framework for SystemC-Based
Virtual Platforms”, International Symposium on System-on-Chip
(SoC), Tampere, Finland, 5-7 October 2009.
[8] Mendel Rosenblum and Mani Varadarajan, SimOS: A Fast
Operating System Simulation Environment, Stanford University
Technical Report CSL-TR-94-631, 1994.
[9] J. L. Peterson et al: "Application of full-system simulation in
exploratory system design and development", IBM Journal of
Research and Development, Vol 50, no 2/3, March/May 2006.
[10] Cadence. SystemC Save and Restore Part 2 Advanced Usage.
http://www.cadence.com/Community/blogs/sd/archive/2009/03/09/
systemc-save-and-restore-part2-advanced-usage.aspx
[11] “Finding an Intermittent Multicore Bug with Wind River
Simics”, Wind River whitepaper, May 2010.
[12] Jakob Engblom, “Debugging Real-Time Multiprocessor
Systems”, Embedded Systems Conference Silicon Valley, San Jose,
USA, 3 April 2007.
[13] Jakob Engblom, Bengt Werner, and Guillaume Girard,
“Testing Embedded Software using Simulated Hardware”,
Embedded Real-Time Software (ERTS), Toulouse, France, January
2006.
[14] Ross Dickson, Jason Andrews, and Jakob Engblom, “Design
Flow for Embedded System Device Driver Development and
Verification”, Design Automation Conference (DAC), San
Francisco, USA, 29 July 2009.
[15] E. Lewis, “Preparing to Replay Debug…”,
http://www.replaydebugging.com/2009/11/preparing-to-replay-
debug.html, November 2009.
[16] George Dunlap, Dominic Lucchetti, Michael Fetterman, and
Peter Chen, “Execution Replay of Multiprocessor Virtual
Machines”, ACM/Usenix International Conference On Virtual
Execution Environments (VEE), Seattle, USA, March 2008.

http://www.cadence.com/Community/blogs/sd/archive/2009/03/09/systemc-save-and-restore-part2-advanced-usage.aspx
http://www.cadence.com/Community/blogs/sd/archive/2009/03/09/systemc-save-and-restore-part2-advanced-usage.aspx
http://www.windriver.com/whitepapers/whitepaper.php?f=WP_Multi-core_Bug%20Simics_0410.pdf
http://www.windriver.com/whitepapers/whitepaper.php?f=WP_Multi-core_Bug%20Simics_0410.pdf
http://www.replaydebugging.com/2009/11/preparing-to-replay-debug.html
http://www.replaydebugging.com/2009/11/preparing-to-replay-debug.html

	1. INTRODUCTION
	2. TECHNOLOGY BACKGROUND
	2.1. Virtual Platforms
	2.2. Checkpointing
	2.3. Checkpoint Portability
	2.4. Determinism

	3. PRACTICAL CHECKPOINTING USE
	3.1. Shared Platform Software
	3.2. Nightly Boot
	3.3. Checkpoint Chains and Checkpoint Merge

	4. SYSTEM STIMULUS
	4.1. No Inputs
	4.2. Internal Inputs
	4.3. External Inputs
	4.4. Spontaneous Input

	5. RELATED WORK
	6. SUMMARY
	7. REFERENCES

