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ABSTRACT 

Virtual platform checkpointing is a technology by which the 
entire state of the software and hardware of an executing 
system is captured. Checkpoints can be used for many 
different purposes during software (and hardware) 
development. Here, we focus on how they are used to 
transport bugs between bug reporters and developers. 
Compared to describing the system state and steps needed to 
reproduce a bug using natural language in a bug tracking 
system, checkpoints provide an executable and complete 
description of the system state. Together with tools that let 
us reproduce the final steps to provoke a bug, we get a 
system that can precisely and efficiently transport bugs from 
a bug reporter to the responsible developers.    

 
Index Terms— Debugging, virtual platform, 

checkpointing, bug reporting 

1. INTRODUCTION 

One of the hardest problems in debugging is to correctly and 
reliably reproduce a bug found by someone else. Typically, 
test departments and other users of software create long and 
brittle “instructions to reproduce the error” in bug tracking 
systems. Accompanying the bug report is a list of relevant 
facts such as the version of the software, the OS version on 
the machine, the nature of the hardware, any attached 
external hardware, and anything else deemed relevant.  

More often than not, the developer has to iterate a series 
of questions with the reporter to get more information about 
the system where the bug manifest itself and the precise 
steps taken to cause the bug to trigger. Such iterations can 
take days for a globally distributed development effort. The 
questions are often hard for the reporter to answer in the 
way the developer wants. In some cases, developers can do 
remote logins to the failing system in order to get their 
hands on the precise failing setup, but more often than not 
this is not possible due to security restrictions or the fact that 
the failing system is no longer available or has been used for 
some other important test. For embedded systems the 
problem gets compounded by the availability of the precise 
hardware needed to run the software and reproduce a bug.  

A crucial aspect of bug reporting is the reproduction of 
the issue. If the developer fails to reproduce the bug in a 
report, it is usually impossible to fix.  

This paper describes our experience in using virtual 
platform checkpointing to transport bugs from a reporter to 
a developer in order to achieve both reliable bug 
reproduction and ease of investigation.  

We assume that both the bug reporter and the developer 
have access to a virtual platform of the target system, and 
using it for software development and test. The reporter runs 
the software on the virtual platform and hits a bug. By using 
a checkpoint of the combined hardware and software state, 
the reporter provides the complete target system state to the 
developer, as illustrated in Figure 1 (the person with the “D” 
shirt is the developer, and the “R” shirt is the reporter). With 
the checkpoint R, the developer can reliably reproduce the 
issue and investigate the state of the failing system. This is 
easy in principle but requires some thought in practice.  

 
Figure 1 Basic Concept 

Note that in all figures in this paper, the meaning of the 
“disk icon” and “board icon” encapsulates any kind of 
information added when working with software and 
hardware. For software, this would mean creating a binary, 
loading it onto a target, configuring it, and simply running 
it. For hardware, it would both mean the initial hardware 
setup of the virtual platform, as well as any changes and 
configurations done to the virtual hardware.  

2. TECHNOLOGY BACKGROUND 

2.1. Virtual Platforms 

The basic requirement for the proposed approach is that 
there is a virtual platform (VP) available for the target 
system. Virtual platforms are currently becoming a natural 
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part of the development process for embedded systems, 
thanks to the flexibility they bring by decoupling hardware 
and software development. In many cases, VPs offer debug 
and development environments superior to physical 
hardware systems. Among the more interesting VP features 
are checkpointing and determinism, which form the basis 
for the work presented in this paper.   

We have been using virtual platforms built using Wind 
River Simics (http://www.windriver.com/products/simics/). 
Simics has been used since the late 1990s to develop 
software for complex hardware-software systems [1]. 
Simics is capable of providing virtual platforms for anything 
from small single-processor embedded controllers up to 
complex multicore, multiboard, rack-based clusters [1], 
running target software quickly enough to be useful for 
large-scale software development [2].  

For embedded systems, an important advantage of 
virtual platforms is that they are available anywhere, in any 
number, and any point in time. This makes it feasible for the 
reporter and developer to share the same hardware setup 
without shipping development hardware around the globe. 
Such common hardware ground certainly aids debugging.  

To facilitate software development, there is no need for 
the virtual platform to be timing and pin-level accurate to 
the actual target – indeed, the only way to create a virtual 
platform which is fast enough to afford software 
development is to simplify the timing and use transaction-
level modeling. Virtual platforms built in this style have 
been used for software development for at least 40 years [4]. 

It is important to note that a VP does not have to be a 
complete and perfect model of the hardware system to be 
useful for the task of testing and debugging software and 
transporting bugs. The VP needs to be complete enough to 
make the software happy, but that requirement is usually 
met by something short of a complete model. For example, 
using a virtual development board with a particular SoC 
plus memory and networking, running the same operating 
system as the actual target is often sufficient. Parts of the 
target system can be stubbed out or replaced with traffic 
generators [3].  

2.2. Checkpointing 

Checkpointing means storing the state of the virtual 
platform target to disk. The checkpoint can later be loaded 
into a fresh virtual platform session, resulting in the exact 
same target system state. Checkpoints include the contents 
of memories and disks, the state of processors, peripheral 
devices, and network connections in the virtual system. The 
checkpoint also needs to store some parts of the simulation 
kernel state, such as the current time and any event queued 
for later execution. Checkpointing has been implemented in 
various ways for a range of virtual platform systems, with 
the first successful implementations taking place in the mid-
1990s [6][7][8][9][10].  

For bug transportation, a crucial aspect of the 
checkpoint is that it contains the software state of the target 
system. When a checkpoint is taken, software can be loaded 
into memory, executing inside a processor, or residing on a 
disk. It does not matter, as all system state is captured in the 
checkpoint, affording the developer full insight into the 
software setup involved in the reporter’s bug.  

 There is no need for the reporter to figure out the 
precise versions of the software they are using. When a 
developer has a checkpoint, it is possible to investigate any 
aspect of the software setup, without round-trips to the 
reporter. Examining the contents of the checkpoint can 
require the developer to run the virtual platform, potentially 
changing its state. However, by making checkpoints read-
only, the checkpoint contents is preserved and the developer 
is able to go back to a pristine state any number of times 
[11].  

For efficiency, checkpoints need to be differential so 
that each checkpoint only stores the changes to the system 
state since the previous checkpoint was taken. Without this 
optimization, checkpoints very quickly become 
unmanageably large. Another optimization is to only store 
the memory areas which are actually in use in a system. This 
means that even if a target system has many gigabytes of 
RAM, the checkpoint (and Simics memory usage on the 
host) might only be a few hundred megabytes if that is all 
the memory that is being used.  

2.3. Checkpoint Portability 

In order to actually transport bugs and not just reproduce 
them on the machine where they were generated (which is 
certainly useful), checkpoints have to be portable across 
hosts, across time, and across virtual platform software 
versions. In practice, the developer and the reporter can 
have very dissimilar systems, typically differing in the 
operating system version, size of memory, number of 
processor cores, and maybe even in word length and 
endianness. Simics checkpoints are designed to achieve such 
portability, but this is not necessarily the case for all 
checkpoint implementations [7][10]. See previous work for 
more details on the Simics checkpoint implementation [6].  

One particular aspect of checkpoint portability and 
transportability is that they do not contain session state such 
as breakpoints or debug information. Neither do they 
contain the code for the hardware models used, that has to 
be provided separately to each user of a VP. However, the 
size of the code of a typical VP is far less than 100 MB, 
often less than 10 MB. Essentially, checkpoints only encode 
the target system state and nothing else [6][9].  

2.4. Determinism 

In a deterministic virtual platform system, the target system 
will execute in the exact same way each time a checkpoint is 
loaded. The checkpoint provides a fixed initial state for the 
simulation, and determinism guarantees that the execution is 

http://www.windriver.com/products/simics/


the same each time the checkpoint is opened. Thus, the 
reporter and the developer will see the same execution 
(starting from the checkpoint), and reproduction of a bug 
becomes trivial. Without determinism, the value of VPs and 
checkpoints is greatly reduced.  

3. PRACTICAL CHECKPOINTING USE 

Working with checkpoints for the last decade has shown us 
that best practices can greatly enhance their effectiveness 
and efficiency.  

The first issue is to bring down the size of the 
checkpoints which are transported. Even though networks 
are fast, moving gigabytes of data over long distances is a 
painful exercise. Bandwidth is an issue between different 
organizations and different geographical locations of the 
same company. Therefore, just blindly recording all the 
system state in a checkpoint might result in a blob of data 
that is so large that it is practically useless. Obviously, the 
data in a checkpoint should be compressed, but compression 
is in general not enough.    

3.1. Shared Platform Software 

Thankfully, the way products are developed helps us. 
Usually, there is some kind of basic platform software (often 
created by a platform team) which really does not need to be 
included in the checkpoint as it is already available to the 
reporter and developer.  

 
Figure 2 Workflow with a shared platform 

The resulting workflow is shown in Figure 2, adding a 
lot of details compared to Figure 1. The platform team (with 
the “P” shirt) distributes the platform software set (the disk 
P) to the developer and the reporter. The reporter constructs 
the system to be tested by combining P with the software 
from the developer (disk D), and possibly some local 
configuration or input set (disk R). When a bug is found, 
only the difference from the platform software needs to be 

reported, and thus the checkpoint R which is sent to the 
developer only contains the changes made by R (including 
the loading of the developer’s software onto the target).  

In Simics, the sharing of common software is 
implemented by allowing checkpoints to depend on static 
read-only disk images. The current state of a disk or 
memory in the virtual platform is found by starting with an 
external file (the static disk image) and then adding the 
differences specified in the checkpoint. The user of the 
checkpoint tells Simics where to find the static images.  

Note that Figure 2 also introduces the hardware 
configuration of the VP. In this case, all users use the same 
virtual hardware configuration (board P), but this is not 
always the case as discussed below.  

3.2. Nightly Boot  

In the previous scenario, the platform team provided 
software images to the other teams. This is a fairly 
inefficient way to work with a virtual platform, however. 
Each user has to spend their own time booting the VP, and 
runs the risk of not having quite the same configuration as 
other users. One way of solving this is to extend the concept 
of a “nightly build” to also encompass a “nightly boot”. 
Essentially, the platform team provides a ready-to-use 
booted system checkpoint containing both the hardware and 
software configuration.  

 
Figure 3 Nightly boot workflow 

Figure 3 shows a nightly boot workflow. The target 
system is booted once by the platform team, and the 
resulting checkpoint P is distributed to the other teams. The 
platform team takes control of the hardware configuration to 
be used by the other teams. D and R receive the virtual 
platform hardware configuration as part of the checkpoint.  

In practice, there can be many checkpoints P produced, 
each one for a certain hardware/software configuration. For 
example, in a rack-based system, there might be a set of 
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board configurations. Each configuration would target 
certain software development areas, such as control plane 
software, DSP software, or operations and management 
software, and only include the boards and software needed 
for each case. Configurations might also mix in boards from 
previous generations of hardware, in order to test backwards 
compatibility of new software.  

 The development team adds its software to the system 
configuration given by the checkpoint P, generating a new 
checkpoint D, which is then used by the reporter. The final 
checkpoint R builds on all the previous checkpoints – but it 
only contains the changes from checkpoint D, making it 
fairly compact. Most of the information would be contained 
in the checkpoint P.  

 
Figure 4 Nightly boot with reporter loading developer software 

Another workflow variant is shown in Figure 4. Here, 
the reporter first modifies the hardware configuration of the 
virtual platform and then loads the developer’s software in 
order to test it. This is a fairly common operation in testing. 
Bugs can be triggered by actions like reconfiguring the 
virtual platform network, injecting faults into the target 
system, or adding nodes to network. All such changes are 
captured in the checkpoint, making it much easier for the 
developer to reproduce and understand the bug.  

Imagine the work needed to replicate such a test on 
physical hardware: you would go to the lab, find the 
appropriate pieces of hardware, and load the specified 
software. Then, after a precise amount of time, pull a 
network cable and insert it into a different port. Wait 
another precise amount of time. Power up a second board 
and connect it to the network. Type a particular sequence of 
commands on the new board, and on and on. Reproducing 
and describing such sequences of actions is not easy, but a 
checkpoint offers an easy way to capture their effects.  

3.3. Checkpoint Chains and Checkpoint Merge 

Differential checkpoints create chains of dependent 
checkpoints. For example, in Figure 3, in order to use 
checkpoint R, you also need to have the checkpoints D and 
P. This keeps each checkpoint small, but it also means that 
when a user creates several checkpoints as part of their 
work, you end up with a set of checkpoints that all need to 
be sent as part of the bug report. The situation is illustrated 
in Figure 5, along with the solution: checkpoint merging. 

  
Figure 5 Checkpoint chains and checkpoint merge 

In a checkpoint merge, a single checkpoint is created 
which summarizes all the changes in the checkpoint chain. 
Normally, the merged checkpoint is smaller than the set of 
checkpoints it replaces, as data items that have changed 
several times in the checkpoint chain are only represented 
by their last values.  

In general, the new checkpoint still depends on shared 
checkpoints or static disk images (as is the case in Figure 5). 
It is possible to create a single “absolute” checkpoint which 
does not depend on any other checkpoint or disk image. 
This will be a large file, but there are cases where it is 
convenient, for example when passing a checkpoint to a 
group which does not have access to the right version of the 
platform software.  

4. SYSTEM STIMULUS 

The above discussion has ignored the issue of system input 
and how to reproduce the stimulus needed to cause a bug to 
occur. In the best case, the bug report checkpoint has 
captured the system state after the last relevant stimulus 
occurred. Simply running the virtual platform from the 
checkpoint will reproduce the bug. In general, however, the 
checkpoint has to be followed by some stimuli to the target 
in order to trigger the bug.   

4.1. No Inputs 

When the system stimulus is the hardware and software 
configuration itself, capturing the bug in a checkpoint is 
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trivial. Just start the system and let it run. The trick here is to 
capture the checkpoint as late as possible, in order to reduce 
the waiting time for the developer. To get to a good point in 
time, the reporter typically reruns the failing test case, 
stopping some time short of the time that the bug occurs.  

One example of a no-input configuration is using a test 
program with compiled-in input data. Another example is 
changing the hardware and software configuration of the 
target and booting it (this works surprisingly often). On the 
software side, this might be updating an OS kernel, adding a 
new device driver, or changing target init scripts. On the 
hardware side, changing parameters like clock frequencies, 
core counts, or the types of boards used can reveal software 
bugs. It is a key strength of virtual platforms that they are 
able to vary their configuration to explore a larger space of 
possibilities than that offered by physical hardware. In 
particular, multicore software tends to be sensitive to 
hardware and software configurations [12]. 

4.2. Internal Inputs 

The target system can be driven to a bug state by a stimulus 
sequence generated within the virtual platform itself. For 
example, traffic generators, fault injection frameworks, or 
scripted input can be used to test software [11][14]. Stimuli 
sources running inside the virtual platform system have the 
distinct advantage that they are perfectly reproducible: they 
work in the virtual time of the virtual platform, and each 
time they are run, they will produce the same input sequence 
with the exact same timing. When stimulus generators use 
pseudo-random number generators to generate variable data, 
they need to make sure that the state of the random 
generator is part of the checkpoint (and that the generators 
are considered part of the VP for checkpointing purposes).  

Just like for the case of no input, only the checkpoint is 
needed to reproduce the bug.  

4.3. External Inputs  

Inputs can come from tools external to the virtual platform, 
including hardware network packet generators and software 
running on the same host machine but outside the virtual 
platform [14][15]. In general, we cannot assume that 
external tools will be able to regenerate a particular input 
sequence deterministically and with precise timing, since 
they depend on the nature and timing of the host machine.  

The solution is to record the inputs from the external 
tools, and use these recordings to drive a deterministic 
replay of the stimulus sequence following the checkpoint. 
Recordings capture the contents of the inputs and the exact 
point in virtual time when they appear to the virtual 
platform.  

Figure 6 shows an example of using a recording. We 
also use  periodic checkpointing during the execution of a 
test. Taking checkpoints at a regular interval means that 
there is always a “fairly recent” checkpoint that we can go 
back to in order to report a bug. Regular checkpointing is 

particularly important for long test runs, where the virtual 
platform might run overnight or for several days. Obviously, 
you do not want to restart such a run in order to prepare a 
bug report.  

 
Figure 6 Periodic checkpointing and input recording 

4.4. Spontaneous Input 

A fairly special source of asynchronous input is the user of 
the virtual platform, typing in the serial consoles of the 
virtual target as well as giving commands to the virtual 
platform tool itself. More often than not, if a bug is found 
during interactive usage, the user has to reproduce the issue 
in a way similar to how you would on a physical machine. A 
virtual platform has the great advantage that scripting can be 
used to precisely build a replay of the input sequence.  

Usually, the reporter will start the recreation with a 
checkpoint of the system state (since almost all users save a 
checkpoint at least after having booted the target), and 
create a script issuing target commands and waiting for 
target outputs. Building a script is often preferable to just 
recording inputs, since the resulting sequence of commands 
can be changed to try variants, and used with updated 
software for regression testing. Recorded input is tied to the 
particular system configuration where the recording was 
taken.  

The bug report would consist of a checkpoint and a 
script that typically opens the checkpoint and then performs 
the necessary steps to trigger a bug [11].  

Scripts can also be used to decorate and explain bugs. 
An ambitious reporter can create scripts that set breakpoints 
to catch when the target software reaches certain locations, 
wait for certain points in time, or react to target output, and 
annotate these events with additional information for the 
developer. The bug report thus becomes an executable 
interactive session, rather than a piece of static text.  

5. RELATED WORK 

Hardware trace debugging such as that offered by 
GreenHills Time Machine and the Lauterbach debuggers 
use special hardware trace units to capture a tape-like 
recording of the behavior of a target processor. However, 
they only look at the processor (no recording is made of 
peripheral devices), have a limited recording time, and offer 
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no way to save the absolute state of the target for someone 
else to process.  

The reverse debugging of gdb 7.x and UndoDB also 
builds on a record-replay system. Such reverse debugging 
does not offer the ability to transport recordings between 
machines, and only apply (by design) to user-level 
processes. They are also only available for certain operating 
systems.  

Regular desktop/server virtual machine systems like 
VmWare and VirtualBox offer the ability to snapshot the 
state of a virtual machine and move it to another host. 
VmWare offers deterministic replay of the target system, 
but only for a single-processor targets [16]. Thus, they 
provide only part of the solution presented in this paper. The 
ReVirt system offers checkpointing and replay of the 
execution of multiprocessor systems [17]. It assumes the use 
of paravirtual guests rather than unmodified software stacks, 
and the checkpoints and recordings do not appear to be 
designed for portability. ReVirt does not deal with multiple 
machines in networks or hardware changes over the course 
of an execution.    

Hardware data recorders record the inputs to an 
embedded system, such as network packets and other data 
streams. They can be deployed in the field or used as part of 
product testing. The recordings are replayed in a 
development lab in order to reproduce issues found. The 
difference from our approach is that it only provides the 
inputs and not the target system state, nor does it provide for 
determinism in the (re)execution of the system. Note that the 
data streams from such recorders can be used with a virtual 
platform as a stimulus. 

Simics’s reverse execution technology allows a user to 
apply reverse debugging to an entire VP including the target 
OS. It is a very powerful debugging tool, and a complement 
to the use of checkpointing to transport bugs. In particular, 
reverse execution helps position the target in a good spot for 
a bug-report checkpoint to be created.  

6. SUMMARY 

This paper has presented our experience in using irtual 
platforms and checkpoints to transport bugs from a bug 
reporter to a developer. With checkpoints, both the state of 
the system where the bug was found and the steps needed to 
reproduce the bug can be encapsulated for transportation. In 
addition to the checkpoint, there are cases where you also 
need to move recorded inputs to the target system to 
complete a bug report. Such record and replay can also be 
automated using a virtual platform.  

Organizations should take advantage of existing data 
shared between bug reporters and developers in order to 
minimize the need to move large amounts of data around. If 
an organization has a defined platform group, it can provide 
shared setups involving both hardware and software to both 
developers and bug reporters.  
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