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Abstract

Knowing the Worst-Case Execution Time (WCET)
of a program is necessary when designing and verify-
ing real-time systems. When evaluating WCET anal-
ysis methods, the common methodology is to compare
a WCET estimate with an execution of the same pro-
gram with known worst-case data on the target hard-
ware. This evaluation method is inadequate, since er-
rors in one part of the analysis might mask errors oc-
curing in other parts of the analysis.

In this paper we present a methodology for systemat-
ically testing WCET analysis tools for modern pipelined
processors. The methodology is based on a decomposi-
tion of WCET analysis into a set of components that
should be tested and validated in isolation. Our test-
ing methodology does not require that we have a perfect
model of the hardware, thus the validation of the hard-
ware model is considered as a separate problem.

We apply the methodology to our previously pub-
lished WCET analysis method, and show that the
pipeline analysis and the calculation method we use are
safe and produce tight results.
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We also show that our WCET analysis method
can handle programs containing nested loops, functions
whose execution times depend on parameters, multiway
branches (switch statements) and unstructured code.
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1. Introduction

The purpose of Worst-Case Execution Time
(WCET) analysis is to provide a-priori information
about the worst possible execution time of a program
before using the program in a system.

Knowing the WCET of a program or piece of a pro-
gram is necessary when designing and verifying real-
time systems. Considering that every day, more and
more devices are being controlled by embedded real-
time systems (from kitchen appliances, through power
grids, to cars and other vehicles), the value of having
reliable software cannot be overestimated.

WCET estimates are used in real-time systems de-
velopment to perform scheduling and schedulability
analysis, to determine whether performance goals are
met for periodic tasks, and to check that interrupts
have suÆciently short reaction times.

To be valid, WCET estimates must be safe, i.e. guar-
anteed not to underestimate the execution time. To be
useful, they must be tight, i.e. provide low overestima-
tions.

The WCET depends both on the program ow (like
loop iterations and function calls), and on architectural
factors like caches and pipelines. Thus, both the pro-
gram ow and the hardware the program runs on must
be modelled in a WCET analysis.

When evaluating WCET analysis methods, the com-

1



mon methodology is to compare a WCET estimate
with an execution of the same program with known
worst-case data on the target hardware.

This evaluation method is problematic, since it
mixes the e�ects of several sources of errors. Errors
in program ow analysis, the hardware model used by
the method, and the method itself may cancel out each
other. Also, if errors are detected, it is very hard to
pinpoint the error source.

In this paper, we investigate the safeness (and, to
a lesser extent, the tightness) of an implementation of
our previously published WCET analysis method [6].
We use a testing methodology designed to isolate the
potential errors in each component of our method.

The main contributions of this paper are:

� We present a decomposition of WCET analysis
into a set of components that should be tested and
validated in isolation.

� We identify the issues involved in systematically
testing a WCET analysis method, resulting in a
testing methodology.

� We apply the testing methodology to our pre-
viously presented WCET analysis method for
pipelined processors, and show that our WCET
analysis method works as advertised.

The paper is structured as follows: Section 2 presents a
division of WCET analysis into components and intro-
duces previous work, and Section 3 presents our WCET
analysis tool. Section 4 discusses the issues involved in
validating WCET tools. Section 5 presents our test
system. Section 6 gives experimental results, and Sec-
tion 7 our conclusions. Finally, in Section 8 we present
our ideas for future work.

2. WCET Analysis Overview and

Previous Work

When performingWCET estimation we assume that
the program execution is uninterrupted (no preemp-
tions or interrupts) and that there are no interfer-
ing background activities, such as direct memory ac-
cess (DMA) and refresh of DRAM. Timing interference
caused by this type of resource contention is assumed
to be handled by the subsequent schedulability analysis
[2, 14].

To generate a WCET estimate, we consider a pro-
gram to be processed through the following sequence
of steps [7]:

� Input Data: determines the possible values of in-
puts for the program.

� Program Compilation: runs the program through
a compiler to generate executable code for the tar-
get system.

� Program Flow Analysis : determines possible pro-
gram ows, without regard to the time for each
\atomic" unit of ow. Also known as high-level
analysis.

� Global Low-Level Analysis : determines the e�ects
of caches, branch predictors, and other machine-
level e�ects that must be analyzed across the en-
tire program.

� Local Low-Level Analysis : determines the e�ect
of the target machine pipeline, memory con�gura-
tion, bus speeds, etc. E�ects that can be handled
locally for each \atomic" unit of ow.

� Calculation Method : �nds the longest executable
paths (and their execution time), given the results
of the global and local low-level analyses and the
ow analysis.

The last four items have been the object of research
in the WCET community:

Program Flow Analysis In order to determine the
worst-case execution time of the program, we need to
analyze the program ow. This provides information
about which functions get called, how many times loops
iterate, if there are dependencies between di�erent if-
statements, etc. Flow analysis can either be performed
in conjunction with the compilation of the program,
e.g. by a special compiler module analyzing the pro-
gram [11], or by a separate tool [8].

Global Low-Level Analysis The global e�ects anal-
ysis considers the execution time e�ects of machine fea-
tures that reach across the entire program. Examples of
such factors are instruction caches, data caches, branch
predictors, and translation lookaside bu�ers (TLBs).
For WCET analysis, instruction caches [9, 10, 16, 26],
cache hierarchies [20], data caches [13, 26, 29], and
branch predictors [3] have been considered.

Local Low-Level Analysis The local e�ects anal-
ysis handles machine timing e�ects that depend on a
single instruction and its immediate neighbors. Exam-
ples of such e�ects are pipeline overlap and memory
access speed. Research have considered simple scalar
pipelines [6, 10, 16] and superscalar CPU pipelines
[17, 25, 26].

Calculation Method The purpose of the calcula-
tor is to calculate the �nal WCET estimate for the
program, given the program ow and global and lo-
cal low-level analysis results. There are three main
categories of calculation methods proposed in litera-
ture: path-, tree-, or IPET (Implicit Path Enumeration
Technique)-based.

In a path-based calculation [10, 26], the �nal WCET
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Figure 1. Overview of our current WCET analysis system

estimate is generated by calculating times for di�erent
paths in a program, searching for the path with the
longest execution time. The de�ning feature is that
possible execution paths are explicitly represented.

In tree-based methods [3, 16], the �nal WCET is
generated by a bottom-up traversal of a tree represent-
ing the program. The analysis results for smaller parts
of the program are used to make timing estimates for
larger parts of the program.

IPET-based methods [9, 15, 21, 23] express program
ow and atomic execution times using algebraic and/or
logical constraints. The WCET estimate is calculated
by maximizing an objective function, while satisfying
all constraints.

Integrated Approaches
Most WCET tools integrate several of the above

components into a single tool, even though the algo-
rithms are kept separate. There are also some methods
that completely integrate the WCET analysis, making
the above division unusable.

In [22] they perform very sophisticated measure-
ments of programs running on target hardware, aided
by static o�-line analysis. No attempt is made to per-
form a static time analysis. In [19] a modi�ed CPU sim-
ulator is used to simultaneously perform ow, cache,
and pipeline analysis, and calculation.

Validation of WCET Tools
We have found no previous work dealing speci�cally

with the systematic testing of WCET tools.
We do not consider it feasible to formally prove the

correctness of an implementation of a certain method.
It might be possible to prove the correctness of a cer-
tain algorithm, but in general we must rely on sys-
tematic testing to �nd errors in implementations and
algorithms.

3. Our WCET Analysis Tool

Figure 1 gives an overview of our WCET analysis
system as implemented today. It is a concrete im-
plementation based on the principles presented in [6]
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Structural:
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...
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...

Time:
tA=6
tAB= -4
...

Figure 2. Example of timing graph

(some extensions regarding branch handling had to be
made, this is described below). In order to generate
a WCET estimate, a program is processed through a
number of modules (as described in Section 2 above):

Compiler The compiler is a modi�ed IAR
V850/V850E C/Embedded C++ [27] compiler which
emits the object code of the program in an accessible
format. We only use C code in our prototype tool.

Program Flow analysis At present, we manually
inspect the object code, source code, and input data
of the test programs, and construct a description of
the worst-case program ow to be used by the WCET
analyzer. We are working on automating this process.

The program description is based on contexts [6, 9].
Each context corresponds to a function or loop in the
program, in a certain invocation context (i.e. the se-
quence of function calls and loop executions leading up
to a certain point in the program).

In the case that functions have input-dependent tim-
ing behavior, each function invocation is given a sepa-
rate context.

The program ow information is used to construct a
timing graph, where the nodes correspond to the basic
blocks of the program in the contexts where they exe-
cute (a basic block occurring in several calling contexts
will be present in several copies). Each such context for
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a basic block will generate an execution scenario.

As shown in Figure 2, the edges and nodes in the
timing graph are annotated with execution time vari-
ables (e.g. tB) and execution count variables (e.g. xB).
The execution count variables represent the number of
times the node or edge is executed in the worst-case
execution of the program.

Constraints on the execution counts are used to
model program ow. There are constraints to express
the �niteness of the program, i.e. the bounding of loops
(e.g. xB � 31) and the fact that it executes once (e.g.
xA = 1), and constraints to make the ow �t together
(stating that the ow into and out of each node is the
same, e.g. xB = xAB + xCB = xBC + xBD). For details,
we refer to [6]. More constraints can be added man-
ually to cut down the space of paths explored in the
calculation.

Global Low-Level Analysis We do not include
any cache or other global low-level e�ect analysis in
the current version of the tool, since our target system
does not have a cache. Also, we want to ensure that
the pipeline modelling is correct before adding caching
e�ects. Cache analysis in the style of [9] is considered
for the future.

Note that caches are not very common in the small-
but-powerful embedded systems that we are primar-
ily considering as targets for WCET analysis. For in-
stance, most ARM CPUs shipping do not have a cache,
and the same goes for most parts from the NEC V850
and Hitachi SH families.

Local Low-Level Analysis We use a Simulator to
obtain execution times for timing graph nodes and se-
quences of nodes, instead of a special-purpose pipeline
model. The Pipeline Analysis feeds the simulator in-
structions together with information about how the in-
structions execute. For branches, the simulator needs
to know whether they are taken or not, and for mem-
ory access instructions the area of memory addressed is
needed (to determine the speed of the memory access).
The execution information is provided by the execution
scenarios.

Times for nodes (e.g. tA) correspond to the execution
times of basic blocks in isolation, and times for edges
(e.g. tAB) to the e�ect of the processor pipeline when
the basic blocks are executed in sequence (usually an
overlap).

Timing e�ects for sequences of nodes are calculated
by �rst running the individual nodes in the simulator,
and then the sequence and comparing the execution
times. The process is illustrated in Figure 3. Notice
that the edge has a negative time, since the sequence
QR executes quicker than the sum of Q and R executed

Fragment of
program

11

Simulation runs

15

22

Fragment
with times

tQ=11

tQR= �4

Simulator

Simulator

Simulator

Q

R

Q

Q

R

R

Q

R tR=15

Figure 3. Timing effect calculation

separately.

Since pipeline e�ects can potentially appear across
sequences of nodes longer than two, we run progres-
sively longer sequences of nodes until a termination
condition is satis�ed (if timing e�ects are detected for
longer sequences, new time and execution time vari-
ables would be generated). The termination condi-
tion depends on the CPU used, and should only be
true when there is no possibility for a longer sequence
to have any e�ect on the execution time of the pro-
gram [6].

The simulator is assumed to be trace-driven, which
means that it does not have a semantic model of the
CPU. It only models the pipeline behavior, given a
stream of instructions.

Calculation Method Our calculation technique
is based on the Implicit Path Enumeration Technique
(IPET) [15, 21, 23].

The WCET estimate is generated by maximizing the
sum of the products of the execution counts and exe-
cution times (subject to the ow constraints):

WCET = maximize(
X

8entity

xentity � tentity)

This maximization problem is then solved using a con-
straint solver or integer linear programming (ILP) sys-
tem. At present, we use the constraint solver of the
SICStus Prolog system [12].

4. Validating WCET Tools

According to Section 2 above, we consider WCET
analysis to be divided into several independent compo-
nents. It is necessary to consider the correctness (and
e�ectiveness) of each component in isolation, since oth-
erwise errors in one component may mask errors in
other components.

For example, a pessimistic hardware model might
mask errors in a ow analysis that generates too short
program paths { the resulting estimates might appear
to be safe for any given set of test cases, but there could
be cases where the analysis would be unsafe.
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It is thus necessary to consider an incremental test-
ing methodology where each component is tested be-
fore the whole system is put to test. Each component
must be safe and tight in its own right in order for the
complete analysis system to be safe and tight.

In the following, we show how we apply the idea of
component-wise isolation to our tool in order to show
that the pipeline analysis (but not the simulator) and
calculation method are safe.

4.1. Obtaining a Known WCET

In order to check the correctness of our tool, we
need to have a known worst-case execution to com-
pare to. This is obtained by executing instrumented
test programs with known worst-case data on a work-
station, generating an execution trace showing how the
programs execute. The trace is a long list of basic block
names, corresponding to the order in which the blocks
are executed.

The trace is used to drive the simulator we use for
our local low-level analysis. The result is an execution
time corresponding to an execution of the program on
the simulator. Thus, discrepancies between the simula-
tor and the real hardware do not a�ect the validation.

For other WCET analysis tools, di�erent methods
might be required to obtain a known WCET that de-
pends on the hardware model used and not on the real
hardware.

The trace is also used to obtain an execution pro�le
for the worst-case execution. The pro�le is a count
of how many times each basic block in the program is
executed (with no sequence information).

Figure 4 gives an overview of our trace-based testing
method. The comparison between the output of the
WCET tool and the trace simulation will be used to
determine whether our WCET tool is correct or not,
and the comparison to the real hardware will indicate
the quality of the hardware model.

4.2. Freezing Other Components
The calculation method and pipeline analysis are

isolated by making the other components of the WCET
analysis method constant.

Input Data In order to avoid errors due to di�erences
in input data between di�erent runs, the input data
has to be �xed and produce a WCET execution for
all our experiments. This is achieved by manual code
inspection and systematically doing testruns.

Program Flow Analysis The program ow analy-
sis is a potentially large source of errors. Our solution
here is to use simple programs where the ow is easy
to deduce and known (since we know the input data,
that source of uncertainty is removed). We check the
correctness of the program ow model and that it cor-
responds to the WCET execution by inspection.

Since no heavy loop optimizations were performed
by the compiler, the source code and object code have
the same structure, avoiding the problems with struc-
tural correspondence reported in [5, 18].

Global Low-Level Analysis Our target hardware
does not have caches or branch predictors, thus, no
global low-level e�ects will be present and no global
low-level analysis is needed.

4.3. Validating the Calculation Method
For the calculation method we want to show that

the use of a constrained maximation problem to model
program ow �nds the longest executable path through
the program.

We use the fact that the maximization process gen-
erates a program execution pro�le: the resulting exe-
cution counts for the timing graph nodes are mapped
back to the corresponding basic blocks to get a pro�le
that is comparable to that of the trace generation.

If the execution pro�les from the WCET analysis
and the trace generation do not agree, there are errors
in our method.

4.4. Validating the Pipeline Analysis
For the pipeline analysis we want to show that it is

correct to generate a program execution time by adding
execution times for timing graph nodes and short se-
quences of nodes.

Errors might be hidden by the calculation method,
but if the execution pro�les of the WCET tool and
the worst-case execution agree, then any error in the
execution time will be due to errors in the pipeline
analysis.

4.5. Validating the Simulator
In order to get some indication of the overall quality

of our approach, we still need to compare our results
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to execution on the real hardware. However, this is
not considered a relevant test for the correctness of our
algorithms due to the potential presence of errors in
the simulator's hardware model.

4.6. Validating Global Low-Level Analysis

In some designs, caches are used and thus cache
analysis needs to be used and validated. Cache analy-
sis must be tested against the real hardware, and pro-
vided that the target CPU has performance counters1,
it should be possible to compare the number of cache
hits and misses in a real execution with those predicted
by the cache analysis.

A potential problem is that for out-of-order and
speculative processors, the pipeline ow and cache ef-
fects cannot be e�ectively separated. However, such
architectures are not very likely to appear in safety-
critical embedded systems due to their inherent unpre-
dictability.

5. Test System and Prototype

Implementation

For our �rst implementation of a WCET tool, we
have chosen to use the NEC V850E CPU [4] as our
hardware platform. The V850E is a typical modern
embedded 32-bit RISC CPU.

5.1. Compiler

We compile our programs using the IAR C compiler
for the NEC V850E. The compiler is run with medium
size optimizations, generating clean and simple code.
There are two versions of the compiler, one that dumps
a format suitable for our tool and one that outputs code
suitable for hardware execution.

5.2. Hardware

Execution times on real hardware are obtained by
running the programs on a V850E emulator. The emu-
lator was set up to emulate a single-chip con�guration
with 60kB of internal RAM and 64kB of internal ROM.
No I/O was used. The IAR C-Spy debugger was used
to run programs on the emulator.

Note that the execution time for a program is a
little \vague". The emulator reports only instruction
fetches, while the simulator reports the time from �rst
fetch to the last instruction leaving the pipeline. How-
ever, this vagueness at the edges of the programs is
limited to a few cycles, and it is only for very small
programs (like fibcall) that the error might be sig-
ni�cant.

1Like those present on desktop CPUs like Pentium and Pow-
erPC.

The times used were the time from the fetch of the
�rst instruction in main() until the fetch of the �rst
instruction after the termination of main()2.

5.3. Branch Handling

Branches on the V850E have varying execution time
depending on whether they are taken or not.3

When a sequence of nodes is executed, it is easy
to determine whether a branch is taken or not { just
determine whether the next node in the sequence is on
the taken path of the branch or not.

In the case that an execution scenario ends with a
branch and is the last in a sequence, we need to de�ne
a static worst case of the branch. Static inspection of
instruction properties made us set the static worst case
to "branch taken", since this involves more processing.

5.4. Termination Condition for the V850E

Our algorithm for pipeline analysis (see Section 3
above), requires a termination condition that deter-
mines when to stop generating times for longer se-
quences of timing graph nodes. According to [6], for
CPUs like the V850E, we can stop generating longer se-
quences when there is no possibility for the �rst node
in the sequence to a�ect the last.

execution time=10

overhang=7

The next instruction
can enter the
pipeline on cycle 4.

P
ip

el
in

e
S

ta
g

es

Clock Cycles
1 2 3 54 6 7 8 9 10

Figure 5. Pipeline overhang

The condition we use in the present tool is to stop
when the number of instructions executed after the end
of the �rst node of a sequence of nodes is greater than
the overhang of the �rst node. As illustrated in Fig-
ure 5, the overhang is the number of instruction fetch
slots that occur after the fetch of the last instruction in
the node until all instructions from the node �nished
(when the node is executed in isolation).

2Note that before main() can be started, the C-startup code
has to be run, and that the exit() function is run after the
program ends to stop the execution.

3Note that the problem with di�erent timing for taken and
not taken branches has been avoided by most previous research in
WCET analysis. In [10] and [16], processors (SPARC and MIPS
R3000) that employ delay slots to mask the timing e�ect of taken
branches are used, giving branches constant timing behavior.
In [28], no attempt to model a pipeline is made and constant
instruction timing (except for cache e�ects) is assumed.
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Program Description Properties Lines of
Code

Executable
Code Size
(bytes)

fibcall Simple iterative �bonacci cal-
culation, ran to calculate
�b(30).

Parameter-dependent func-
tion, single-nested loop.

22 48

matmult Matrix multiplication of two
20x20 matrices.

Multiple calls to the same
function, nested function
calls, triple-nested loops.

81 260

jfdctint Discrete-cosine transforma-
tion on a 8x8 pixel block.

Long calculation sequences,
single-nested loops.

169 736

insertsort Insertion sort on a reversed
array

Input-data dependent nested
loop with worst-case n2=2 it-
erations

37 136

duff Using \Du�'s device" [24] to
copy a 43 byte array

Unstructured loop with
known bound, jump table for
switch statement

32 186

Figure 6. Benchmark programs

Since we can only see that instructions get accepted
in our current simulator, we cannot check the over-
hang directly. A safe estimation is produced by taking
the time at which the last instruction was fed into the
pipeline (instead of the time at which a potential in-
struction after the last would enter the pipeline). The
resulting estimate is obviously greater than the de�ni-
tion of the overhang, and thus safe (but slightly pes-
simistic).

6. Experiments

Since any reasonable set of test programs could be
used to check the correctness of our method, we let
some secondary objectives a�ect the choice of test pro-
grams.

We want to ensure that our WCET analysis tool can
handle various types of structures and ows appearing
in real programs, like function calls, calling-context de-
pendent execution times, loops (with various nesting
depths), and unstructured loops. We also want to vary
the code between computation-intensive and decision-
intensive.

The benchmarks we have selected are listed in
Figure 6. All the programs have been used by
other groups [17, 19], and their worst-case behavior is
known.4

Since we are targeting embedded systems, we had
to make slight modi�cations to the benchmark pro-
grams: no operating system calls are allowed, which

4We are aware that the benchmarks program do not represent
\typical embedded programs", but that is not relevant for the
present purpose of proving the pipeline analysis. It would be
relevant if we wanted to demonstrate the precision achievable on
real programs for an end-to-end WCET method.

means that input data for input-dependent programs
was integrated into the program, and that calls to li-
brary functions (like printf()) were removed.

Analysis
Program Default Opt Sim Real

fibcall 287 286 286 312
matmult 239528 239528 239528 222236
jfdctint 5550 5550 5550 4843

insertsort 2077 1249 1249 1080
duff - 1226 1226 1081

Figure 7. Measured Execution Times

We have run our �ve test programs through our
WCET tool, through trace generation and simulation,
and on real hardware. The results of the timing mea-
surements are shown in Figure 7. All times are mea-
sured in clock cycles. For the WCET tool analysis
results, we have given two values: one obtained using
simple loop bounds for all loops (i.e. just the maxi-
mum number of loop iterations), and an \optimized"
estimate where we manually added information about
infeasible paths to the program-describing constraint
system. For duff we had to do optimized modelling
only, since simple loop bounds are inapplicable to un-
structured code.

We use the \optimized" estimates for the validation,
since they are the results that correspond to the real
power of our model. Using just the simple loop bounds
would have been an arti�cial restriction that does not
take full advantage of the power of our program ow
modeling.
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6.1. Results for the Calculation Method

For the optimized program ow models, the pro-
�les generated by the WCET tool and the real execu-
tion match exactly (not shown in any table, since that
would be a rather boring long list of numbers).

This indicates that the constrained maximization
does �nd the worst-case path, and that it does not
push the execution counts beyond the actual worst
case. Thus, we consider the IPET-based modeling to
be valid.

6.2. Results for the Pipeline Analysis

Since the execution pro�les match, the agreement in
execution time between the WCET tool and the trace-
driven simulation indicate that the pipeline analysis
method is correct.

It should be noted that we do not expect to need
to model very long sequences of nodes in order to cor-
rectly handle pipeline overlap. For the V850E, we never
needed sequences longer than two nodes.

There is also no overestimation, which indicates the
ability of our method to obtain tight execution time
analysis.

6.3. Simulation vs. Hardware

Compared to the hardware, the simulated execution
times for four of the programs are between 5 and 15%
greater. Thus, the simulator usually overestimates the
execution time. Interestingly, for fibcall the simu-
lated time is less than the hardware execution time.

Our preliminary analysis is that most of the over-
estimating timing errors are due to a dual-issue op-
timization in the V850E that we have not modelled.
The underestimation in fibcall is probably related to
branch handling.

There are many reasons why time measured on a
machine model could deviate from times measured on
the real machine:

� The hardware manuals may contain errors or be
vague on certain issues. This could be because of
intentional simpli�cation, unintentional errors, or
intentional errors or vagueness (in order to protect
smart designs from being copied by competitors).

� The implementation of the machine model might
contain bugs.

� The hardware implementation might deviate from
the design. There can be bugs in the hardware
that cause the timing to deviate from the manuals,
even if the manuals are \correct" visavi the design
of the hardware.

Given these problems, Petters and F�arber [22] con-
clude that a hardware model is inherently impossible

to construct, at least for complex CPUs of the Pentium
II class. However, we see several reasons why hardware
models (simulators) are unavoidable and desirable for
embedded real-time systems work:

� Simulators are a mandatory part of embedded de-
velopment environments. There will be hardware
models available, and the trend is towards cycle-
accurate simulators, which can be used for WCET
analysis.

� Timing small pieces of a program is very diÆcult
on hardware, but easy on a simulator.

� Hardware measurement requires specialized hard-
ware and complex system setups.

� The hardware might not be available until late in
the development process. Working with a model
of the hardware, veri�cation work can start early
(assuming that the model can be built from pre-
veri�ed components).

We consider the development and validation of the
simulator to be a separate problem, since the simulator
is a separate component in the WCET tool.

6.4. Complexity of Our Approach
There have been some concern that the IPET ap-

proach in general and our approach in particular has
the potential to be computationally very expensive.
Speci�c worrisome points have been:

� The constraint solving computation time required
to calculate the execution time of a program is
potentially exponential.

� The constraint system could get unmanageably
large, even if the solution method as such is ef-
�cient.

� The simulation of long sequences might only ter-
minate after a large number of very long sequences
have been run.

Figure 8 shows some complexity measures for our
benchmark programs. The columns give the number of
basic blocks in the program code, the number of nodes
in the timing graph, the number of execution count
variables in the constraint system, and the number of
sequences run in the pipeline analysis.

The number of sequences executed is usually quite
low, but explodes for the duff program5. We should
de�ne a more eÆcient termination condition for the
V850E. However, the run time is still not very long, at
most a minute on a Pentium III/700 Mhz.

The number of variables does not seem to explode
with the program size, but is rather linear in the num-

5This is due to one node having a very long pipeline overhang:
a multiple-pop instruction that is fetched and then executes for
15 more cycles.
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Program BBs Nodes Vars Seq Runs

fibcall 7 7 15 42
matmult 27 36 79 310
jfdctint 14 14 29 67

insertsort 7 7 15 36
duff 18 18 45 580

Figure 8. Complexities

ber of timing graph nodes.

The run time for the constraint solver was never a
problem { a matter of seconds even on a rather slow
UltraSparc-I machine. This is consistent with the re-
sults of other groups that only use linear constraints
to model programs [23, 28]. The groups that have re-
ported unmanageable execution times for IPET anal-
ysis have used more complex non-linear constraints
[15, 21].

7. Conclusions

In this paper, we have dealt with the issues involved
in validating a WCET analysis method. For safety-
critical systems development, it is necessary to validate
WCET analysis methods.

We have demonstrated how WCET analysis can be
decomposed into a set of components, each of which
should be validated in isolation. Only by composing
well-tested and safe components is it possible to build
a reliable WCET tool.

We have presented a testing methodology for isolat-
ing the pipeline analysis and calculation method from
the program ow analysis, cache analysis, and hard-
ware modelling (CPU simulator). We have applied this
methodology to our previously published WCET algo-
rithm [6], and given evidence that the pipeline analysis
and calculation method are safe and tight.

In order to achieve the isolation, we carefully con-
trolled the test programs and the associated ow anal-
ysis. By comparing a trace-driven simulation of the
actual worst-case of a program with the output of the
WCET tool, we removed the e�ect of any errors in the
machine model. It is not necessary to use real hardware
for the algorithm validation.

Given that we have a validated pipeline analysis
and calculation method, we can add cache analysis and
other global low-level analyses to our tool. Each such
analysis will have to be tested in isolation, before in-
corporation into the tool (as discussed above).

Since our pipeline analysis method is shown to be
correct in isolation, we can change the simulator used
to retarget the system to another CPU. This does not
a�ect the correctness results for the pipeline analysis

as such. If the new simulator uses a correct hardware
model, the resulting new analysis tool will also be cor-
rect.

Regarding program features, we have demonstrated
that our modelling and calculation method handles
function calls, loop bounds dependent on function call
argument, nested loops, multi-way branches and un-
structured code. Thus, our approach is capable of han-
dling real-world programs.

8. Future Work

In this paper, we have dealt with a simple non-
cached pipelined CPU. We plan to extend the WCET
analysis method to include cache- and branch predic-
tion analysis.

On the ow analysis side, we plan deeper investiga-
tions on how to express path constraints to keep the
WCET analysis tight even for programs with complex
program ow. This is a necessary step on the way to
fully automated program ow analysis.

Furthermore, we would like to compare the IPET-
based calculation method with a path-based approach
like e.g. [26].

We have a Master's Thesis project underway that
aims to remove the errors in our V850E simulator by
systematic comparison between the simulator and the
hardware. Since the CPU Simulator is designed to be
generic, it should be easy to adapt it to di�erent pro-
cessors.

We plan to integrate the WCET tool into the soft-
ware synthesis environment CHaRy [1], and specialize
the WCET tool for other embedded CPUs.

Since our pipeline analysis is designed to be easy to
port to new simulators, we can easily port our WCET
analysis tool to new hardware architectures, as long as
an there exists cycle-correct simulators. The WCET
analysis and the simulator can then be tested and ver-
i�ed in isolation as outlined in this article.

The long term goal is to integrate a WCET analy-
sis tool into the IAR Embedded Workbench integrated
development environment, and provideWCET analysis
as a standard and accessible tool for embedded systems
developers.
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