
Time Accurate Simulation: Making a PC Behave Like a 8-Bit
Embedded CPU �

Jakob Engblom∗

Dept. of Information Technology

Uppsala University

P.O. Box 325

SE-751 05 Uppsala

Sweden

jakob@docs.uu.se

http://www.docs.uu.se/~jakob

Magnus Nilsson
CC Systems AB

Fyrisborgsgatan 5

754 50 Uppsala

Sweden

magnus.nilsson@cc-systems.se

http://www.cc-systems.se

Abstract

When developing embedded systems, developers of-
ten use simulation techniques to allow development to
proceed without access to the target hardware. To make
use of the high quality development tools available on
the PC platform, one popular simulation method is to
compile the code intended for the target system to run
on the PC, allowing the development of the software to
proceed on the PC without use of the final target sys-
tem. For a distributed system, each target node is given
its own process on the host PC, with software on the
PC simulating the communications network.

We have extended one such simulation environment
to include the aspect of relative and absolute process-
ing speed of the target systems, allowing for a more
accurate simulation where not only functional but also
timing-related bugs can be found and diagnosed. The
absolute time mode makes the software on the PC run
at the same speed as the real target, thus allowing the
mixing of simulated nodes with real target hardware in
the same system setup. The method is applicable to any
embedded processor, as long as it is significantly slower
than the PC.
∗ This work was performed within the Advanced

Software Technology competence center (ASTEC,
http://www.docs.uu.se/astec), supported by the Swedish
National Innovation Systems’ Administration (VINNOVA,
http://www.vinnova.se). Jakob is an industrial PhD student
at IAR Systems (http://www.iar.com) and Uppsala university,
sharing his time between research and development work.
� Uppsala University, Dept. of Information Technology, Tech-

nical Report 2002-024. Submitted to RTAS 2002 and accepted as
a poster, but none of the authors was able to attend and present
the poster, thus not published.

The system has been implemented and tested on
standard PCs running the Windows NT operating sys-
tem, and is currently being used in industrial projects.

Keywords: Embedded Systems, Simulation, Case
Study, Real-Time Systems, Computer Architecture,
Hardware Modeling

1. Introduction

Developing software for embedded systems usually
involves simulation on the host development system.
The target system might be unavailable since hardware
development is taking place in parallel to software de-
velopment, the hardware might be too big or expen-
sive to equip each engineer with her own test bench
(forestry machines or cars), or the hardware is too dan-
gerous to test early software on (weapons systems and
medical equipment).

Furthermore, the productivity of a programmer is
much lower when using the hardware of the target sys-
tem, since setting up the system, downloading code to
multiple nodes, and running it is time consuming, and
the debugging tools available cannot match the con-
venience of desktop tools (the communications links
limit the observability). Thus, simulation technology
is almost necessary to allow embedded programmers to
achieve any kind of productivity for complex systems.

As illustrated in Figure 1, the systems we are tar-
geting typically include a CAN-bus connecting an op-
erator panel and a number of control nodes containing
processors running the software of the system. Each
control node contains a processor that runs a single
program, and has a number of I/O modules attached to
them using CAN or some simpler serial links or direct

1

http://www.docs.uu.se/~jakob
http://www.cc-systems.se
http://www.docs.uu.se/astec
http://www.vinnova.se
http://www.iar.com
http://www.it.uu.se/research/reports/2002-024/

�������

�	
��
����

�������	 �������	

�������	 �������	 �������	

����
�
����	

��	
���

���	

����
�

���	

�������	

Figure 1. Example target system

electrical connections. To support the development of
such systems, we need to simulate multiple nodes in
the PC of the development engineer.

The time accurate simulation technique described in
this paper is based on separation of the target code into
a hardware-dependent and a hardware-independent
part, with a well-defined programming interface to the
hardware-dependent part. The hardware-independent
code is compiled and run on a PC for simulation, with
the hardware-dependent code replaced by code that
simulates the hardware and hardware-dependent code
in the PC environment.

Several nodes can be simulated, communicating over
a simulated CAN network or simulated direct I/O
links. The basic framework only simulates the func-
tionality of the code and not the timing, since all code
is run at full speed on the PC, with very different tim-
ing from the target system. The timing is different
both in absolute terms (i.e. the code requires a dif-
ferent amount of time to run on the PC compared to
the target system) and relative terms (i.e. the relative
speed of different nodes is not reflected in the speed of
the simulation).

To perform time accurate simulation, breakpoints
are added to the hardware-independent source code.
The breakpoints contain information about the execu-
tion time for a piece of code, when executed on the tar-
get system. By comparing the total amount of target-
system time that each simulated node has accumu-
lated, a scheduler is able to synchronize their execution
on the PC, giving a relative timing behavior consistent
with the speed of the target systems (slower nodes will
be slower in the simulation). The scheduler can also
slow down the execution so it runs at the speed given

by the times in the breakpoints, thus making the ab-
solute timing identical to the target systems (all nodes
run at a speed consistent with the target system).

We have implementated a prototype system for
Windows NT with the scheduler implemented as a
DLL, and have performed tests on the system verifying
its functionality.

2. Related Approaches

The most common method to obtain simulation with
some kind of timing aspect for an embedded target on
a PC host is the use of cycle-accurate simulators like
the ARMulator from ARM [2]. They are CPU simu-
lators that execute code using a very detailed simula-
tion of the target processor, allowing them to give very
exact time measurements. Unfortunately, such simu-
lators typically incur slow-downs of a factor 10000 or
more, making them too slow for daily usage (even if
the development host is much faster than the target
system). Some simulators can boot operating systems
and run a whole system cycle-accurately, meaning that
there is no need to adapt the code for simulation, giving
a very precise simulation [4].

Hardware emulators are special versions of proces-
sors that are used in a development setting to pro-
vide full-speed execution of code with increased visibil-
ity compared to the regular processors. Emulators are
very expensive, not available for all processors, and still
require a download process before running and debug-
ging can begin. They are invaluable for tracking down
subtle timing-related bugs in the hardware-processor
interface, but are not as useful as a replacement for
the real target system during development.

Instruction set simulators like SimICS from Vir-
tutech [10] simulate code with a slowdown between 10
and 100, but do not attempt to simulate the execu-
tion speed of the processor, making them suitable for
finding functional bugs but not timing bugs. The Sim-
ICS extension called SimICS Central [9] builds on an
idea similar to our Time Accurate Simulation. SimICS
Central synchronizes several target nodes running on
multiple host computers, while we synchronize within
a single simulating host computer (and run the pro-
grams compiled for the host, not inside a simulator).

Hardware-software co-simulation, where CPU simu-
lators interact with low-level simulation of the VHDL
code used for custom FPGAs or ASICs is a very pow-
erful approach. However, the hardware simulators are
very very slow (factor of 1000000), and the approach is
mostly intended for systems containing large amounts
of application-specific logic. Thus, this does not help
much with simple systems built around standard mi-
crocontrollers.

ENEA OSE offers a simulation environment provid-
ing the API of a Real-Time Operating System (RTOS)
for use on host machines [14]. Applications written for
the OSE API can thus be run on the host PC, without
any change to the code, and also communicate with
other real or simulated OSE nodes. This is similar in
concept to our basic simulation system, but it is par-
ticular to OSE, and there is no effort to provide timing
correctness.

A common problem with all those solutions is that
they require the use of special debuggers that are able
to talk to the simulators or hardware. One purpose of
the PC-based simulation on which we based the time-
accurate simulation was to enable to use of PC pro-
gramming tools like the Visual C++ Debugger from
Microsoft or Purify from Rational. The goal of our
work is a simple and useful system that is very cheap
to implement.

3. Basic Simulation System

��� ��� �	
��

����
������
	

��
���
	��	�	��	������	

��
���
	����	�	��	������	

�
��
����������	
���	

Figure 2. Programming model for simulation

�
��
��
���
�	

��������
	
 �
���������
	

�	�

�
� 	
�

��
!"	�����
	

#�
�	�
!"	�����
	

����
��	�
�
� 	
�

Figure 3. Compilation chain for simulation

The time accurate simulation is an extension to an
existing simulation technique that allows simulation of
target code on a PC host and the use of PC program-
ming tools to debug the simulated code.

The simulation technique is based on writing appli-
cations with strict separation between the hardware-
independent application code and the hardware-
dependent code, as illustrated in Figure 2. This allows

the hardware-dependent code to be replaced to allow
simulation on a PC with the same program source code,
as shown in Figure 3. Thus, the target programs exe-
cute as native programs on the host PC, enabling very
fast execution and the use of any programming tool
available on the PC platform for program inspection
and debugging.

The interface between the hardware-dependent and
hardware-independent parts is a standard API (appli-
cation programming interface) that has been developed
during and used in a number of embeddded systems
projects. It is a set of functions like CanSend(channel,
message, &result), IoRead(port, &value,
&result), and SerialSend(channel, buffer,
bytecount, &result).

In the simplest simulation model, shown in Figure 4,
all control nodes are simulated on the PC, communi-
cating with each other and a simulation of the sur-
rounding world and the controlled machine. Using a
model of the world allows the software to test interac-
tion with hardware that is not available. Each control
node and world simulation node is given its own pro-
cess on the host operating system, since this simplifies
the structure of the software.

��� ��� �	
��
 ��� ��� �	
��

���
���

��� �	
��

$�

�����	
����
�
����	�% ����
�
����	�&

���
���

�	
��

���

Figure 4. Simulation within a PC

As shown in Figure 5, by forwarding the signals on
the simulated buses to external interface cards, it is
possible to mix simulation of control nodes and a world
model with real control nodes and real-world systems.

This simulation system is very powerful and allows
for a gradual transition from purely simulated systems
to a system running completely on the real target hard-
ware. This methodology has proven very effective in
real use, with most software errors found in simula-
tion, before the software is first run and tested on the
actual target hardware.

However, timing related bugs cannot be diagnosed in
this simulation system, since there is no notion of target
time. Each simulated control node runs at full speed
in the time slice allocated to it by the PC operating

��� ��� �	
��
 �������	
��

���
���

$�

�����	
����
�
����	 �	�
�����
�
����	

���
���

�	
��

���

��� �	
��

�	
��

��
�

���
��
�

���
��
�

��

Figure 5. Mixed simulated-real environment
system, making the relative speed between nodes and
the absolute speed of execution completely unrelated
to that of the target system.

4. Time Accurate Simulation

We have extended the simulation system described
above to support simulation with correct relative tim-
ing and absolute timing. To achieve this, we synchro-
nize the simulated nodes based on the amount of target
time they have accumulated.

To support this synchronization, breakpoints are in-
serted into code running on the PC. Each breakpoint
indicates the time it would take the target system to
execute the code between the breakpoint and the last
breakpoint. Each simulated node has its own local time
counter which is incremented when the code reaches a
breakpoint.

4.1. Placing Breakpoints

The placement and density of breakpoints is a crit-
ical point in our simulation method. Many implemen-
tations of multithreaded languages like Erlang [3] and
Java [1] use yield points, points at where threads can
be interrupted. Yield points are inserted in such a way
that a program can never loop without encountering a
yield point. In essence, our breakpoints fill the same
function, but we might want a higher density in order
to allow a smooth simulation.

From a timing point of view, the best and most pre-
cise model is to place a breakpoint at the end of each
basic block in the code. A basic block is a piece of
code that is always executed as a unit; typically, basic
blocks start at jump targets and end at branches or
jumps [11].

For each basic block, we ascribe an execution time
on the target platform. The time is then entered into
the source code of the program by cyclecount annota-

���

����������
	
��������
���

����
����
����
�����
�����
�����������
������������
������������	
���
�������������
�����������	
��
����������
��������������	����
����	
����������������
�
���������
������
��������
������������������
�����
������������	
���
�����������
�
�������	�����
�

���
�

����

���

��������

������

����

���

����

����

Figure 6. Basic blocks and time annotations

tions, as shown in Figure 6. The cyclecount annota-
tions are then converted into breakpoints by appropri-
ate #defines when compiling on the PC (for programs
written in C/C++).

The execution time for a basic block can be gen-
erated by static analysis techniques like those used in
worst-case execution time (WCET) analysis [6], or by
measurement. For simple target machines, the assump-
tion of a fixed execution time for a block is reasonable.

Placing breakpoints after each basic blocks obvi-
ously gives a very large overhead, since each breakpoint
requires a comparison of times with all other processes
in the simulation – for what might be the execution of
a single target instruction. To reduce the overhead, the
breakpoints can be implemented in such a way that the
global time comparison is postponed until the local ex-
ecution has accumulated a certain amount of execution
time. This allows for a trade-off between the precision
in the simulation and the simulation overhead.

Breakpoints can also be placed less densely in the
code, in order to reduce the overhead or because timing
information on the basic block level is not available.
To keep one node from running away from the others,
and to keep the time to be recorded by a breakpoint
constant, it is necessary to place one breakpoint inside
each loop. A loop which always executes the same
number of iterations and contains no conditionals will
have a fixed execution time, and could conceivably be
handled by a single breakpoint.

Placing the breakpoints less densely (or implement-
ing more efficient breakpoints as detailed above) means
that the simulation will progress in a less smooth man-
ner, in that the difference in time between nodes will
be greater. However, over time, we will still maintain
the correct relative and absolute timing.

Currently, we use measurements or manual es-
timates to generate times for larger chunks of
code (sometimes including loops with fixed iteration
counts). This works quite well in practice, and has
been used in commercial projects with good resuls. Ac-
tually, even a small error in the timing for a breakpoint

will not be fatal in practice, as long as the overall exe-
cution time is approximately correct. An advantage of
using less dense breakpoint placement is that the sen-
sitivity to error in breakpoint timing is reduced, since
each breakpoint will be counted fewer times and thus
an error will have a smaller overall impact (assuming
that the absolute magnitude of the timing error is on
the same level for dense and sparse breakpoints).

For many practical applications, breakpoints on the
basic block level might not actually be necessary to
obtain good results. Considering the experience from
multiprocessor simulators like SimICS [9], allowing
each node to run a few thousand clock cycles be-
fore switching to another node is considered quite rea-
sonable, and there is no reason why the same logic
shouldn’t apply to our system.

4.2. Relative Timing
Correct relative timing means that if two target

nodes run their software at different speed, the same
difference in speed should be manifest in the PC simu-
lation. At each breakpoint, the local times of all sim-
ulated nodes are compared, and the node with lowest
time is allowed to execute.

���	�%
���	�&
���	�'

����� ����� ����� �����

Figure 7. Time progresses in steps

As illustrated in Figure 7, at each instance the node
with the lowest total execution time (shortest white
horizontal bar) is allowed to execute up to its next
breakpoint, adding a certain amount of execution time
to that node (the grey bar). tdiff is the difference in
execution time between the node that has executed the
least target time and the node that has executed the
most target time, and it changes as time goes on.

This method does not give a completely smooth
progress of time on all simulated nodes simultaneously
(which is impossible given the fact we only use a sin-
gle processor), but rather stepwise progress where the
nodes are approximately synchronized. Note that the
maximal difference in time between two nodes, tdiff,
is never greater than the greatest time between two
breakpoints: tdiff ≤ max(tbreak), so the smoothness of
simulation can be controlled by the spacing of break-
points.

4.2.1. Unit of Time

To allow the comparison of time between different
nodes, a common time base is needed. The execution

time of code for each target is usually reported in clock
cycles, but as different targets will have different clock
speeds, this is not possible. Since clock speeds are of-
ten odd, like 6.33 Mhz or 1.57 Mhz, it is not feasible
to use some common “base clock”. Our solution is to
use 64 bit integers to count time in units of picoseconds
(10−12s); with this resolution, we can represent execu-
tion times up to about 5100 hours (210 days), which is
clearly sufficient. The error in converting to this unit
from a clock speed of 6.33 Mhz is 1.17 · 10−13s, which
is about 0.000074 % of a clock cycle. All times are con-
verted to this common unit as soon as they enter the
system.

4.2.2. Hardware Interface Calls
The time consumed by calls to the hardware inter-

face has to be accounted for. This can be done in two
ways. Either a breakpoint is added at the call to the
programming interface in the application code, or the
hardware simulation code is instrumented with break-
points.

Instrumenting the application code is simple and
corresponds to the approach of giving each hardware
interface call a certain execution time. Instrumenting
the hardware simulation has the advantage of allowing
a more fine-grained simulation and potentially yielding
more precise times (since variations in the execution
time can be modeled), but it is quite difficult to map
the execution times for pieces of the target hardware
dependent code to the simulation code on the PC.

4.2.3. Multiple Threads in one Node
When a target node contains several programs that

execute in a multithreaded environment (without an
RTOS), they all need to have the same target system
time. This is solved by having all threads executing
on the same node share a single local time. Determin-
ing which thread to run is based on a simple priority
scheme where the thread with the highest priority is
allowed to run; this scheme is mainly used to handle
interrupts, since it could lead to starvation for low pri-
ority tasks.

Note that if an RTOS was used to schedule tasks on
a node, the scheduler of this RTOS would have to be
simulated to provide a correct simulation. However,
the projects we have looked at (and for which Time
Accurate Simulation was designed) have not used an
RTOS.1

4.2.4. Interrupts
Interrupts complicate the picture, since they be-

long in the hardware-dependent layer and are invisi-
1It is still very common that embedded real-time systems do

not use an RTOS, since in many cases they are not needed [5].

ble to the hardware-indepedent code (unlike the inter-
face calls). Since the functionality provided by the in-
terrupts is accounted for by the interface simulation,
we only need to account for the time consumed by
the interrupts. For the time being, we do not al-
low interrupts to activate functions in the hardware-
independent code. The basic simulation framework
and supporting code was designed in such a way that
interrupts are confined to the target-dependent code.

�����������
	�
���

��� ��� �	
��

���	

�����(
	��

Figure 8. Interrupt thread inside a node

To account for the time spent in interrupts, a special
thread is started inside a simulated node, as shown in
Figure 8. This thread occasionally wakes up, queing it-
self for execution at the next breakpoint. The interrupt
thread is given the highest priority, which means that
when the node gets to execute the next time, the inter-
rupt thread will execute and increment the local time
by an amount corresponding to the interrupt handler
execution time on the target. After each activation,
the interrupt thread sleeps until it is time to trigger
another interrupt.

Interrupts can thus only hit a node at breakpoints,
which is not entirely true to their actual behavior on
the target system. However, our solution does reflect
the important effect of unpredictably adding execution
time to a program, which is often good enough to find
bugs. Note that the invocation of the interrupts in
the simulated environment is not tied to the causes of
events in the real system, like messages arriving on the
CAN bus. This implicitly assumes that the interrupts
can be modeled as a random time disturbance.

4.3. Absolute Timing
To obtain the correct absolute timing relative to the

surrounding world, the simulation is simply synchro-
nized to the clock on the host system. Only if the sim-
ulation node that is the furthest behind is also behind
the real-time clock of the host is it allowed to execute.
Thus, the simulation will sometimes be completely idle
to let the real world catch up.

4.4. Taking Control of the Scheduling
Since the synchronization approach is based on de-

termining which of the simulated tasks is allowed to
run, we need to take control over the scheduling of the
simulation tasks from the operating system scheduler.

In our solution for Windows NT, we use a mutex
symbol that is shared between all the Windows NT
processes involved in the simulation. All processes ex-
cept the one that is currently running are blocked and
queued on the mutex. To enable access to the shared
mutex, we use a dynamically linked library (DLL) that
all processes load on startup. This is the best way to
obtain shared code and shared data under Windows
NT, since each DLL can have a data area visible to all
processes loading it. Actually, all the shared function-
ality in the simulation, like communications buses, are
implemented by DLLs as shown in Figure 9.

���
)**

���
)**

�	
��

)**

#��	
)**

Figure 9. Dynamically linked libraries

In the Time DLL, there is a function that checks the
execution times of the nodes in the simulation and gives
the mutex to the node with the lowest execution time.
This function is invoked by the breakpoints inserted
into the code of each simulating node.

An alternative approach to scheduling control that
used operating-system priorities to slow down nodes
that were running ahead was ruled out since the con-
trol over execution was not strong enough to guarantee
good synchronization.

Another alternative, using multiple threads instead
of multiple processes, was discarded since it would com-
plicate the compilation of the system. The code for
each node is written separately, and integrating them
into one program would thus entail possible name col-
lisions. It would also require other changes to the code,
and on balance, the performance increase would not be
worth the trouble.

During our experiments, we found one problem with
the Windows NT scheduler: when releasing a process
from a mutex symbol, Windows NT increases its pri-
ority temporarily, so that it will run quickly after its
release. This caused a problem since it meant that the
process releasing the mutex was switched out before it
could queue itself on the mutex, giving very bad per-
formance for the system overall. This was solved by
making the process that starts to run (gets the mutex)
do a short sleep before beginning its work, giving the
releasing task time to queue itself on the mutex.

5. Prototype and evaluation

We have completed a prototype implementation of
the time-accurate simulation system, running on Win-
dows NT. To provide some insight into the working of
the system, a control panel application (shown in Fig-
ure 10) was implemented, as well as a tool to read and
diagnose the event logs generated by the system.

Figure 10. System control panel

The control panel also indicates some interesting
and useful side effects of using the time-accurate sim-
ulation system. First, when running in absolute time
mode, it is possible to vary the speed of the system by
multiplying the real time by a constant before compar-
ing it to the target systems’ times (setting the “speed”
value greater than one makes the simulation faster, and
setting it to less than one makes it slower). Second, the
entire simulated system can be stopped at the press of
a button, which is very useful to allow the investiga-
tion of the state of multiple processes without the risk
of any one of them running away.

5.1. Overheads observed
The basic functionality of the system was tested by

implementing two tasks that send messages to each
other. We extended the experiment by adding an inter-
rupt thread to one of the processes, and using multiple
threads within the same node. All the functionality
tested correctly.

The overheads observed for switching between tasks
was about 40 microseconds in the worst case. The
experiments were performed with a median time of 5
ms (target time) between breakpoints, which is rather
coarse. At this granularity, the overhead for the time
simulation, running at absolute speed, was less than
2% of the total host execution time.

The main limitation to the number and speed of
nodes that can be simulated on a single PC is the den-
sity of breakpoints in the simulated code rather than

the absolute speed of the intended target. Putting
breakpoints every 1 ms will increase the overhead per
node to about 10 %, which should still make it possible
to execute at least five nodes simultaneously in abso-
lute time. This means that breakpoints on the basic
block level are infeasible for simulation with correct ab-
solute time. Basic-block level breakpoints can still be
used to get a high-resolution simulation with correct
relative time, however.

Note that even if breakpoints are placed rather
sparsely, the system still provides a useful service in
that over time, each node will run at the right rate.
This does allow us to detect errors like one node feed-
ing another node data at a too high rate. We can
still detect errors in time-dependent algorithm, since
the time taken to compute results can be determined.
Simulating multiple nodes on a single PC will always
entail a certain coarseness in the simulation, and expe-
rience points out that even rather coarse time-accurate
simulation systems can be very useful in a practical
development environment.

*����+��	�����(
���������
��(��

���
��������
����
���������
��,�
��	�����(��(�
��
�+��	�

Figure 11. Demonstration system

Figure 11 shows the setup of another experiment,
where a single task was written that simulated the LED
output of a simple application running on a lab board.
The PC simulation was then instrumented with the
timing measured from the lab board, and the two pro-
grams started simultaneously. The PC simulation was
executed in absolute time, and maintained synchro-
nization with the lab system, providing a nice demon-
stration that the absolute time simulation worked.

5.2. Limitations

The system as presented is not perfect or complete
in any sense, and we would like to point some of the
current limitations of our approach.

The usability of this approach depends on the abso-
lute speed of the target systems being much less than
that of the simulating system, since we want to simu-
late multiple nodes and the communications between
them. For the intended target systems, 8-bit and 16-
bit processors running at speeds between 1 Mhz and
40 Mhz, this is definitely the case2.

2Note that the host systems we using, PCs, are among the

The assumption of a single execution time for a basic
block (or greater unit between breakpoints) depends on
using predictable and deterministic hardware. For ad-
vanced processors like the Pentium 4 or PowerPC G4,
this is not the case, but most of the CPUs used in em-
bedded systems are typically simple and deterministic
[6, 7]. For machines with pipelines, the model could be
expanded with times for the edges in the basic block
graph, in the same fashion as done in WCET research
[13], but this would entail an incredible overhead. More
work is needed on how to optimally place breakpoints
considering the allowable overhead, and then how to ac-
count for pipeline effects within this breakpoint struc-
ture.

There is no support for a real-time operating sys-
tem (RTOS) being used on a node. If an RTOS was
used, the RTOS scheduling mechanism would need to
be simulated and RTOS overheads accounted for.

Considering the use of user-level interrupts, the tar-
get systems have very short interrupt latencies, on the
order of a few clock cycles. This makes it hard to pro-
vide timing-correct responses to interrupts in the sim-
ulation, since the task switch latency on Windows NT
can be very long [8], making the simulation react to
interrupts much slower than the target system. This
is almost unavoidable, due to the different design goals
of general-purpose PCs and embedded systems. How-
ever, from the point of view of the simulated programs,
the interrupts will still occur at unpredictable points,
which is a very useful property in testing the code.

6. Conclusions and Future Work
Compared to the basic simulation system described

in Section 3, the time accurate simulation adds the abil-
ity to find and diagnose another class of bugs, timing-
dependent bugs, in the simulation on a PC, thus re-
ducing the number of bugs that have to be discovered
and fixed while using the actual target hardware. Both
bugs depending on the relative timing of multiple nodes
in the same system, and bugs depending on the abso-
lute speed of the code on the target system can be
found. An example of the former are bugs depending
on communications races between target nodes, and
examples of the latter are bugs in control algorithms
that depend on the real-world timing of samples and
output.

We note that the system as described in this paper is
being used in real development work, since it offers po-
tential gains in programmer productivity and product

fastest uniprocessors that are available today. Workstations and
servers typically rely on multiple CPUs to boost performance,
but that does not help our simulation until we have extended it
to use multiple CPUs.

quality. No data is available yet on the precise benefits
or required density of breakpoints.

For the future, there are many potential directions
of development. It would be interesting to investigate
how the simulation could be spread across several PCs,
using Ethernet to carry the signals of the CAN bus and
other buses. RTOS support for in-node scheduling will
be required at some point, and support for interrupt-
activated code in the hardware-indepedent layer could
be useful. How to place breakpoints should also be in-
vestigated, especially considering how sparse they can
be placed while still retaining useful relative and abso-
lute time in the simulation.

To make the system more precise in actual use, a
development platform that includes basic-block tim-
ing analysis and back-annotation of this information
to the source code is needed. This requires changes
to target compilers and the inclusion of WCET analy-
sis techniques in embedded development environments.
Manual timing estimates and measurements for the ex-
ecution time of pieces of the code are still good enough
to make the system usable.

More details can be found in [12].

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G.
Burke, P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink,
D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Rus-
sell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapeño Virtual Machine. IBM
System Journal, 39(1), February 2000.

[2] ARM (Advanced Risc Machines) Ltd. WWW
Homepage. www.arm.com.

[3] Joe Armstrong, Mike Williams, Robert Virding,
and Claes Wikström. Concurrent Programming
in Erlang. Prentice-Hall, 2nd edition, 1996.

[4] Kathleen Baynes, Chris Collins, Eric Fiterman,
Brinda Ganesh, Paul Kohout, Christine Smit,
Tiebing Zhang, and Bruce Jacob. The Perfor-
mance and Energy Consumption of Three Em-
bedded Real-Time Operating Systems. In Proc.
4th International Workshop on Compiler and Ar-
chitecture Support for Embedded Systems (CASES
2001), November 2001.

[5] Jack W. Crenshaw. Mea Culpa. Embedded Sys-
tems Programming (US edition), 15(3), March
2002.

http://www.arm.com

[6] Jakob Engblom. Processor Pipelines and
Static Worst-Case Execution Time Analysis.
PhD thesis, Dept. of Information Technol-
ogy, Uppsala University, April 2002. Acta
Universitatis Upsaliensis, Dissertations from
the Faculty of Science and Technology 36,
http://publications.uu.se/theses/.

[7] Jennifer Eyre. The Digital Signal Processor
Derby. IEEE Spectrum, 38, June 2001.

[8] Michael B. Jones and John Regehr. The Prob-
lems You’re Having May Not Be the Problems
You Think You’re Having: Results from a La-
tency Study of Windows NT. In Proc. 5th IEEE
Real-Time Technology and Applications Sympo-
sium (RTAS’99), June 1999.

[9] Peter S. Magnusson, Magnus Christensson, Jesper
Eskilsson, Daniel Forsgren, Gustav H̊allberg, Jo-
han Högberg, Fredrik Larsson, Andreas Moestedt,
and Bengt Werner. Simics: A Full System Simu-
lation Platform. IEEE Computer, 35(2), February
2002.

[10] Peter S. Magnusson, Fredrik Dahlgren, H̊akan
Grahn, Magnus Karlsson, Fredrik Larsson,
Fredrik Lundholm, Andreas Moestedt, Jim Nils-
son, Per Stenström, and Bengt Werner. Sim-
ICS/sun4m: A Virtual Workstation. In Proc. of
the USENIX 1998 Annual Technical Conference,
June 1998.

[11] S. S. Muchnick. Advanced Compiler Design. Mor-
gan Kaufmann Publishers, 1997.

[12] Magnus Nilsson. Time Accurate Simulation. Mas-
ter’s thesis, Dept. of Information Technology, Up-
psala University, September 2001. Thesis number:
UPTEC F 01 074.

[13] Friedhelm Stappert, Andreas Ermedahl, and
Jakob Engblom. Efficient Longest Executable
Path Search for Programs with Complex Flows
and Pipeline Effects. In Proc. 4th International
Workshop on Compiler and Architecture Support
for Embedded Systems (CASES 2001), November
2001.

[14] ENEA OSE Systems. OSE Soft Kernel and
Soft Environment. Product Description, OSESE
ma8082000:003 R1.0, 2000.

http://publications.uu.se/theses

