(<

RAPRPIDO

2026

_Iirtual Platforms for System
Architecture, Development, and Test

Dr Jakob Engblom, Cadence, cadence

VLAB™ - Virtualization for Software Development

Ecosystem
~ VLAB™ VDM VLAB™ VDM VLAB™ VDM Debug using any
- standard debugger
c ot Applications App App
omplete
target-compiled < _ Applications - -
software stack Middeware 05 BaseSW Connect to system
- os Hypervisor simulators
S
Virtualization of the
target hardware (Virtual board V-ECU / VHPC Embedded and
system — ECU, automotive test

board, system level @ s tools
< IC Connectivity ~ Storage Connectivity ~ Memory
Large library of

models: cores, SoCs, | Integrate 3 party
buses, networks, N i e hardware models
components

= Industry leading virtualization of embedded hardware for software developers Script and automate
= High-performance hardware simulation (multiple GIPS/GHz) in Python

= Multithreaded and multi-process execution for cores, IP models, and SystemC plugins
= Scalable, on-demand capacity for CD/CI/CT flows

= Access for local and global development teams

= Run on a laptop, desktop, server, or in the cloud

Export traces and
logs for analysis

cadence

Architecture -
And the Product Life Cycle

Maintenance

Architecture

Validation

Implementation

cadence

RA\p'?oE a.ﬂg\"’l’. y
What is a System? % .4,
(Featuring Chips & Software) Vl’;t#,-";‘l,ﬂa forms for Syste, |
DrJakobEngb'Om.Cadenc:J i Deve'Opment and Test
Cadence

Environment

Product / System

1T\
" (o—o

Electronics

A

A 4

Sensor

A

A 4

Actuator

Board

iy

]

NN
4 N\

Chip

\. J
HEBRRER

Board

software

Board

software

cadence

Systems Featuring Chips & Software

cadence

F Maintenance

Implementation

cadence

Architecting (Something) (With Models)

Where are the main
risks and unknown?

What is important to
model?

What are you

architecting?

What is not important
to model?

Product / System

£
=]
H

What is under your
control?

)|
togogy) | H e

What external inputs,
factors, behaviors
must be considered?

The model should be faster and easier to change than

an actual implementation for modeling to make sense

cadence

Architecting a Chip (Generic SoC for Automotive, Mobile, etc.)

Processor Processor

GPU D2D Memory
(chiplet) die-to-die controller

Network-on-Chip

System-level
cache

l/O System

I

cadence

Modeling Hardware Units and Interconnects

More abstract Classic virtual prototyping / Actual hardware

Behavior /
e functionalit 0 G
__ Traffic generators

virtual platforms

000

RTL
(1k-1M)

000

Existing hardware

(7)

Cycle-accurate
(700k)

G Contention

Behavior
(<7)

Approximately-
timed (70k)

Loosely timed
(10)

cadence

Modeling Software

SpecCPU, Coremark, etc. No processor semantics
Capture system dynamics Easier to execute, but needed.
define ah}:aad of software. misses system-level ;ast t?[rgln '
epeatable.
implementation, adaptable _Vaspects
across generations . . Instruction trace.
JUSt the appllcatlon Network traces.
—\/ Workioad Memory traces.
OrkKioa

Task graph M

Traces

Just the behavior
Full software stack

Workload

[T~

Define system behavior,
before detailed
implementation

Ideal for fidelity — but takes
time to run. And does it
Drivers even exist early?

Firmware

cadence

Attention! Feedback Loops!

Workload / Model /

Measurements g
Software Hardware

Examples

Power management Streaming & video Interrupt timing JIT compilers

*Application is a control loop *Adjust video quality based on *Change to software timing *Measures execution time using
«Throttle on overheating network bandwidth *Changes when OS schedules performance counters

+Speed up when cool *Prioritize traffic tasks *Decides what to compile
-Speed up when p|ugged in 'Divergent behavior dynamlca”y

Fixed traces (often) fail to capture feedback loops in the system behavior and can be directly misleading

cadence

Example: For a Processor Core Architect

Use RTL to represent the
GPU. See next slide.

Al (traffic
generator)

Add memory operations to load
the NoC and memory system.
Die-to-die has no effect.

Processor Processor
(cycle accurate) (cycle accurate)

Network-on-Chip
(cycle accurate)

Cycle-accurate models for
the processors + closest
memory system

Memory
controller
(cycle approx)

System-level
cache (cycle
accurate)

I/O System (loosely timed)

Provide data to the software
running on the processors

Too bothersome to model

just push in frames

an actual camera interface,

Video
(=)

Net USB Disk

Memory
(cycle approx)

cadence

Using the RTL Implementation as Model

vvvvv
VVVVV
VVVVV

» v \ 4 \ 4 L 4

vvvvvvv

Running RTL:
emulators and

prototyping
hardware

cadence

 Architecting a chip

* Buying components
- =the components are done

* Architecture = configuration &
Interactions

- How many processor cores?

- How many GPU slices?

- Clock speed?

- Power budget?

- Bandwidth of the interconnect?
o Structure of the interconnect?

* Running pieces as RTL makes sense
- "Fast” with emulators and prototypes

- Modeling someone else’s design is hard

cadence

Example: For an Al Accelerator Architect

Processor Processor Run driver software and
feed the accelerator
(LT) (LT)

GPU
(traffic
generator)

Memory
(LT/fixed cost)

Network-on-Chip
(approximately timed)

Al (cycle D2D System-level Approximations for NoC

and cache might be
accurate) (AT) cache (AT) enough, if memory

accesses that miss L3 are
rare

I/O System (loosely timed)

Likely a very large model,
but largely self-contained
with occasional external

accesses VldeO

(B)

Net USB Disk

cadence

Example: For a Device Interface Designer / Architect

Run network driver in the
context of an operating Processor Processor

system and network (LT) (LT)

benchmarks

[

Remove accelerators from
the model, remove drivers
from the OS image — not

Memory
controller
(LT)

Network-on-Chip
(LT)

Add a network for the
network device to talk to, so
that interesting behaviors
can be examined — even
connecting to a real
network!

I/O System (loosely timed)

central to device bringup

Model the programming Rest-of-network Real machines,

interface of the network Net USB Disk (behavior) Internet, ...
device, exactly like the
hardware

cadence

Temperature (C)

49.3 55.0 60I.0 GSI.O 70I.0 7SI.0 84.0
- .

Modeling Power, Energy, Thermals

« Power is “easy”

- Power state, clock speed, voltage, ...
- Essentially, functional aspects that are
set by software and firmware

* Energy is trickier
- Energy = Power * Time

- Requires a precise timing model

« Thermals are even trickier
- Requires a good energy model

- Energy to heat conversion model
- Geography of the chip

- Thermal properties of materials

- Heat propagation and cooling

- = complex physics simulation

Screenshot from Cadence Celsius

Analysis by Cadence Celsius

cadence

More Abstract Models — “Boxes and Lines” — Examples

Sweep through 8 Unit behavior Data DEE]
variations in Data Generate data at a @) (“box”) generator generator Model
input size and configurable rate, > algorithms and
generator ; olicies
pace configurable types i p
Connection &

network behavior

Typically, does Parametrize (“box”) Data Network Network

not use concrete Processing processing capacity — generator control
data or compute latency vs data size,

actual results bandwidth, ...

Unit connections

(lines”) Parametrize
bandwidth, latency.
. . Measure processing Model contention, i
Processing Processing times on real hardware, policies, protocols. AiEeEEsing
type A type B use as model parameter

Protocols, buffers,

Parametrize size, routing rules

bandwidth in,
bandwidth out Network

router

Processing
type B
stage 2

Storage Processing

Output
generation

Network
router

Abstract models can give surprisingly accurate results — turn Excel sheet guesses into executable model

Very suitable for complete system models beyond a single IP or chip

Example Higher-Level Model
‘\ VisualSim model of a Five Node Network

20

igger

[T T LT
D b b Dot D D D | D B D

SitibioasAsEgE st Daision_and_Conhol_ou!put calc_latency ADAS_Function_Latency
Software sequences executed on hardware

Source : VisualSim Architect

Detailed hardware implementation
at each Node

Each node contain:

Cycle Accurate Processor cores
Cycle Accurate Caches

Cycle Accurate Buses

Cycle Accurate Memory (DDR4)

Used with permission of Mirabilis Design

ence

Example: From DARE Project (HIPEAC RISC-V Workshop)
INT TA objectives

DARE Devices: Realisation of a set of DAR [

_ _ . E devices through
_phySIcal design QF chiplets, design of substrate and silicong
Interposer and SiPs for chiplet integration, PCB design and
Fabrication, and bring-up and characterisation of boards

Pt_\ysical Prototype: Realisation of a multi-node machine
with each node housing a standard x86 host and multiple
DARE devi ; rds)

Virtual Prototype: Realisation of a virtual twin of a multi-
node (~100x-1000x) machine built as a PDES (parallel
discrete event simulator) multi-fidelity model to integrate
models of DARE devices at an appropriate abstraction and
with the required interfaces (e.g., PCle, CXL over PCle/UCle)

|
Server ~ 2x-4x Nodes Node = Host + Devices

i i 7 Ine = 4 z Host (x86) + Memory
The form factor of the devices, the physical prototype and the virtual pr OfOU’P;_”?tF“e d;)“gf LS Nacine s L e pZL‘Ca:z orvey
: . inalized i m Architecture Definition phase. itch Network Switches S Eos
for representative purposes only; to be finalized in the Syste Neworkicte Nevor it SeR A

cadence

F Maintenance

Architecture

Validation

cadence

Virtual Platforms — From IP to System, Developing Software

System-Level VP
Develop software for the

entire system Rest-of-network simulator
o
e
Chip-level VP aggregates IP- L
level VP with other
components on the chip Virtual board

Virtual board

Applications Virtual board

Virtual Chip

Firmware - BSP

Virtual IP Block

Firmware - BSP

Firmware

S

Firmware Board is typically built to
mirror a particular real product

IP-Block Level

Cloud services

IP-block-level VPs for Physical system model

complex subsystems with Simulation model abstraction
firmware i
level mlg_ht vary. System-level virtualization mirrors
More details and timing Fast functional for an actual system W't,hhmﬁlt'plel
accuracy for IP blocks system flows boarvc\j/s,r I'gti’;aﬁtr'ggry'tt tte ed ~ .
ore, e nferne”, ete. cadence

Using Models at the Implementation Stage: Shift Left

. Hardware-software integration
Software team waiting... Software development
Software stack
Hardware design Hardware design
Software team provides

. feedback on the design _ _
Hardware design early Shorter time-to-market is a
primary (but not the only)
V r benefit
Hardware-software integration on virtual L V

’

Software stack

<
Hardware design B
\

Software development Virtual platform is
developed alongside the
hardware development =

change over time

cadence

IP Block Development: Software on VP

Develop without RTL,
and without RTL in
FPGA or simulation

Develop and test
firmware, using a stand-
alone model

VLAB™ VDM

Mock of SoC

Firmware

Core Core

Memory map

Unit test

IP block

ERENE

IP design Firmware development

IP-SoC integration

Test IP block and firmware
functionality in a system

IP block

Integrate IP Block

Develop and test
applications using the

Develop and test
applications using the
IP block

VLAB™ VDM

model into SoC (and
board) model

Applications

context Boot code Driver

Firmware Main Main

core core

Core Core

System devices: local timer,

Memory map =
:
model model

IP block

SoC

Develop and test
hardware SDKs

Develop driver
and boot code
support for IP

block Boot code Driver

Applications

Replace firmware-
capable model with
a behavioral model Main Main

core core

System devices: local timer,
interrupt controller, ...

IP block
behavior

aoepa|

Memory map

Device
model

Device
model

SoC

Speed up
simulation, protect
firmware and

secrets

Bt 2imel e B SBI it SoC customer Long—term_ software development,
enablement Cl/CD, maintenance

cadence

Pre- or Post-Silicon: Free Developers from Hardware Limitations

Unlimited access to targets for
testing - use any PC, server, or
cloud VM to run tests

Apply any test configuration

on-demand — not limited by
availability of physical test rigs

Load software to the target
system instantly — no complex

Automate and script any action —the
simulator has perfect insight and control,
control over time, react to hardware and
software events

Vs

-

Applications
Middleware 4
N
N
a /v
Python scripting and
control)
~
[u]u]x]

Software debugger)

flashing or download flows

Software
load

VLAB API
server

Debugger
connection

Co-sim
connection

Tracing &
Logging

VDM

Applications

Middleware

V-ECU

.

Debug better than hardware —
powerful breakpoints, complete
system inspection, debug across
all cores, ...

Trace and log everything—
software, hardware, networks, ...

Inject faults, force boundary

Network tracing i
Hardware tracing

conditions, ...

cadence

Virtual Platforms as an Ecosystem Collaboration Tool

virtualized development

VPs enable early development,

010
010

Operating systems,
libraries, middleware
vendors, open-source

O
\S

Software tool
vendors

N\

VPs integrate and
support tools, enable
early support for new

chips

oooo oooooo
4_/_’ o oooooo

Automotive Tier-1, Aerospace suppliers, .

I

Suppliers use chip-level models to
build board-level models. Use for
internal software development and
rd validation. Enabling customers and

OEMS: Automotive, Aerospace, .

=8

{@Ei&

o
o
o

Use board-level models from suppliers.
Build board models.
Build system models and digital twins.
Extensive software development.
Long-term software maintenance.

I
¢

L
Cloud providers

N

Deploy virtual platforms in
the cloud to facilitate
collaboration and easy
access for any developer

Consultants & services

N

Provide virtual hardware
access to developers at
consulting firms

Use VP internally for

software partners.

software shift-left and
validation. Enabling
customers and software
partners.

Automotive &
embedded chip
companies and

IP providers

cadence

Fast Functional Model Variants — Optimize for Performance

Application

Application

Application

Application

Application

Application

APl intercept

Driver

Stub devic * Functionaity * Functionalty

Driver Virtio driver

Driver Driver

Driver

Hardware-oriented
reference model

. Firmware
Stub device -
_ Virtio Device ngge(fssgg
A stub device that Fast device model A
does nothing can be A

sufficient to make

Paravirtual virtio _
software run devices can <
speed simulation Host-based

time and time to
build a system

implementation

Subsystem model
VLAB Fusion

technology —
efficient for

compute-intense and is a small VDM

A full subsystem
model runs firmware

Reference models
tend to contain
more details than a
fast model, slowing
down the simulation

Output, side-effect hardware in its own right —

slower than shallow
model, but supports
more use cases

yther devic

cadence

Automotive Variants Simpler Than Traditional Virtual Platforms

A

Host compiled | Target compiled Real ECU
» Breadth Driver APl emulated | Register interface to hardware Target binary
of use Level 4 V-ECU T T]
cases Target binary . . .
Level 4-- V-ECU |
) . . I . EEEEN
Simplified binary EHEEEE EEEEE
Level 3 V-ECU T 1 I EEEEN
Production BSW I BN BN B . I=====
- _ 0000 000000
Level 2. v ECU - - - - - - - - - - - - 0000 O00000
Production BSW 111 EEEE
Level 1 V-ECU ﬁ HEN 3388) (833388
Application Level T L L0l EEEE
N
Level 0 V-ECU L1 11
Controller model 3888) (33332
N ss
Single-program Application code — source or binary
(__) Real code — source or binary
2580) (383222

Closeness to the real ECU
Based on Prostep IVIP Standard Nomenclature

cadence

? Maintenance

Architecture

cadence

Validation — Does the System Work Right in Practice?

Requires specialized
measurement and test
equipment

Evaluating...

Function

Fly what you test,
Test what you fly

Real world

Performance

Power
What is being tested

and/or validated?

Simulated world

Thermals

Fault tolerance

And more ... Build the smallest possible model that

allows useful results to be produced

cadence

Example: IP Block Development: Validation of the RTL

AVII”“
cadence

vvvvv

vvvvv

_-~-"-"(RTL Emulator or Simulator
Validate -
firmware vs

RTL

Validate RTL vs
test benches or
firmware

RTL
Core

RTL bus

RTL
Devices

IP design RTL development
RTL validation

RTL
Core

Unit test
bench

aoea)U|

RTL
Memory
Pb

IP block

VLAB™ VDM

Run RTL for the IP Applications
block in the context of
the overall system

Validate SDK vs
RTL

Validate the RTL and
firmware in a system Boot code Driver

and boot code vs

the actual RTL

context

Firmware Main Main

(ofo] (<} core
Measure IP block RTL RTL Sygtem devices: local timer
performan ce with Core Core interrupt controller, ...

real-world stimuli
RTL bus Memory map

RTL RTL Device Device
Use RTL-level Devices | Memory model model
power modeling

for power and IP block in emulator
energy or simulator

Firmware validation 4 Software validation
RTL validation Performance testing

IP-SoC Integration

cadence

Virtual Hardware-in-the-Loop Testing

- Hardware-in-the-Loop is the “gold
standard” for software testing

- ECU or network of ECUs

VLAB™ VDM

Applications

- Connected to physical simulation setups 255
> (whole ecosystem of solutions for this) MCAL

&) — (&

* Replicate with virtual platforms for
virtual testing
- Real software stack

- Simulation setup matching the real world
- Closed-loop simulation including real- Smulaton ofthe
world behavior

- Real systems attached to real-time sim [,;%‘
0—oO

« Attach test and calibration tools to
manage tests

f Test and calibration tools R

Simulation of the world

cadence

- &
alidatirtg Automgeftive Systefns
“47
Weather, rain, ice, Buildings Behavior of other Record & replay
temperature... J vehicles ﬁ real-world tests
Lighting conditions R, SUEESNG || e dynamics
interface | Programmed test
scenarios
Physical environment
Generated and Randomly
/ SenSOI'S programmed tests are generated test
necessary to reach all .
| corner cases for something scenarios

like ADAS or AD
Body mechanics .

Battery and motors

ECUs & software

Architecture

Validation

Implementation

cadence

Deployed Systems Still Require Software Updates

New standards

Look and feel updates New operating modes

Updated functionality

New functions

Improved performance

Security fixes

Safety fixes

Actually shipping what ised... 3 .
ctually shipping what was prom cadence

Continuous Integration and Deployment

Use appropriate
simulation setups for
— each test

Quick pre-Cl I VLAB™ VDM

Developer

changes or

adds code 8

VLAB™ VDM

Automated CI system

Subsystem tests

System tests

Physical test rigs

Some tests might be
run on hardware

cadence

qb

Architecture

Conclusions

Maintenance

cadence

Conclusions and Summary

Qse cases drive
Simulation setups

" US(tahthe_ right models for
imulation e right pur ,

arir‘\r;t‘ecture can be e
done at many levels

You can only moge

Expect to mix models What you have

from different sources
and of different types

information about!

System models can
extend to networks and
networks—of-networks .

\Watch out for feedback Mode| usage continyes
loops and control loops through the product
in your workloads lifecycle

r

cadence

Long-term software
development

System Exploration / Q System-level
Requirements acceptance
: System-level testing

SERIEHT RS Q and validation

Chip (SoC) SoC testing and
Architecture Q validation
Component .
Architecture & < Co;zo:aﬁgatﬁszng
Design

Component implementation
(hardware and/or software)

a
o

e

AR s or
1Y

cadence

cadence

See www.vlabworks.com and www.cadence.com for more about us!

https://www.cadence.com/go/trademarks
http://www.vlabworks.com/
http://www.cadence.com/

	Default Section
	Slide 1: Virtual Platforms for System Architecture, Development, and Test

	VLAB Works
	Slide 4: VLAB™ - Virtualization for Software Development

	Intro
	Slide 5: Architecture – And the Product Life Cycle
	Slide 6: What is a System?
	Slide 7: Systems Featuring Chips & Software

	Architecture
	Slide 8
	Slide 9: Architecting (Something) (With Models)
	Slide 10: Architecting a Chip (Generic SoC for Automotive, Mobile, etc.)
	Slide 11: Modeling Hardware Units and Interconnects
	Slide 12: Modeling Software
	Slide 13: Attention! Feedback Loops!
	Slide 14: Example: For a Processor Core Architect
	Slide 15: Using the RTL Implementation as Model
	Slide 16: Example: For an AI Accelerator Architect
	Slide 17: Example: For a Device Interface Designer / Architect
	Slide 18: Modeling Power, Energy, Thermals
	Slide 19: More Abstract Models – “Boxes and Lines” – Examples
	Slide 20: Example Higher-Level Model
	Slide 21: Example: From DARE Project (HiPEAC RISC-V Workshop)

	Implementation
	Slide 22
	Slide 23: Virtual Platforms – From IP to System, Developing Software
	Slide 24: Using Models at the Implementation Stage: Shift Left
	Slide 25: IP Block Development: Software on VP
	Slide 26: Pre- or Post-Silicon: Free Developers from Hardware Limitations
	Slide 27: Virtual Platforms as an Ecosystem Collaboration Tool
	Slide 28: Fast Functional Model Variants – Optimize for Performance
	Slide 29: Automotive Variants Simpler Than Traditional Virtual Platforms

	Validation
	Slide 30
	Slide 31: Validation – Does the System Work Right in Practice?
	Slide 32: Example: IP Block Development: Validation of the RTL
	Slide 33: Virtual Hardware-in-the-Loop Testing
	Slide 34: Validating Automotive Systems

	Maintenance
	Slide 37
	Slide 38: Deployed Systems Still Require Software Updates
	Slide 39: Continuous Integration and Deployment

	Conclusions
	Slide 40
	Slide 41: Conclusions and Summary
	Slide 42

	End
	Slide 43

