
Virtual Platforms for System
Architecture, Development, and Test
Dr Jakob Engblom, Cadence, engblom@cadence.com

2026

© Cadence Design Systems, Inc. All rights reserved.4

Ecosystem

VLAB - Virtualization for Software Development

▪ Industry leading virtualization of embedded hardware for software developers

▪ High-performance hardware simulation (multiple GIPS/GHz)

▪ Multithreaded and multi-process execution for cores, IP models, and SystemC plugins

▪ Scalable, on-demand capacity for CD/CI/CT flows

▪ Access for local and global development teams

▪ Run on a laptop, desktop, server, or in the cloud

VLAB VDM

V-ECU

Services

Applications

CDD

RTE

MCAL

MCU Buses

VLAB VDM

Connectivity

OS

Applications

BSP

Middleware

VLAB VDM

Hypervisor

App

MW

OS

App

RTE

Base SW

Virtual board

SoC

Connectivity

V-ECU / VHPC

SoC

Complete

target-compiled

software stack

Virtualization of the

target hardware

system – ECU,

board, system level

Large library of

models: cores, SoCs,

buses, networks,

components

StorageICPMIC

PMICIOEth Switch HMI HMI

Memory

Debug using any

standard debugger

Connect to system

simulators

Embedded and

automotive test

tools

Integrate 3rd party

hardware models

Script and automate

in Python

Export traces and

logs for analysis

© Cadence Design Systems, Inc. All rights reserved.5

Architecture –
And the Product Life Cycle

Architecture

Implementation

Validation

Maintenance

© Cadence Design Systems, Inc. All rights reserved.6

What is a System?
(Featuring Chips & Software)

Environment

Product / System

Electronics

Board

Chip

IP

Board

Sensor

Actuator

Board

firmware
software

software

software

© Cadence Design Systems, Inc. All rights reserved.7

Systems Featuring Chips & Software

© Cadence Design Systems, Inc. All rights reserved.8

Architecture

Implementation

Validation

Maintenance

© Cadence Design Systems, Inc. All rights reserved.9

Architecting (Something) (With Models)

What are you

architecting?

What is important to

model?

Modeling!

What is not important

to model?

Where are the main

risks and unknown?

What external inputs,

factors, behaviors

must be considered?

What is under your

control?

The model should be faster and easier to change than

an actual implementation for modeling to make sense

© Cadence Design Systems, Inc. All rights reserved.10

Architecting a Chip (Generic SoC for Automotive, Mobile, etc.)

Processor Processor

Network-on-Chip

System-level

cache

Memory

controller
Memory

I/O System

GPU

(chiplet)

AI NPU

(chiplet)

Video DiskUSBNet

D2D
die-to-die

D2D

© Cadence Design Systems, Inc. All rights reserved.11

Classic virtual prototyping /

virtual platforms

Modeling Hardware Units and Interconnects

Cycle-accurate

(100k)

Approximately-

timed (10k)

Loosely timed

(10)

Actual hardware

RTL

(1k-1M)

Existing hardware

(1)

More abstract

Traffic generators

(<1)

Behavior

(<1)

Behavior /

functionality

Timing

Contention

B B

B

B

BB

T

C

T C

B T C

TC

T C

T C

© Cadence Design Systems, Inc. All rights reserved.12

Modeling Software

Full software stack

MIddleware

Workload

OS

Drivers

SDK

Firmware

Runtimes

Just the application

Workload
Task graph

Traces

SpecCPU, Coremark, etc.

Easier to execute, but

misses system-level

aspects

No processor semantics

needed.

Fast to run.

Repeatable.

Instruction trace.

Network traces.

Memory traces.

Ideal for fidelity – but takes

time to run. And does it

even exist early?

OS emulation

Fixed trace

Dynamic / flexible trace

Snippets

Task

Task

Task

Task

Just the behavior

Algorithm, model-driven engineering

Behavioral model in high-level language

Capture system dynamics,

define ahead of software

implementation, adaptable

across generations

Define system behavior,

before detailed

implementation

© Cadence Design Systems, Inc. All rights reserved.13

Examples

Attention! Feedback Loops!

Workload /

Software

Model /

Hardware
Measurements

Power management

•Application is a control loop

•Throttle on overheating

•Speed up when cool

•Speed up when plugged in

•…

Games

•Measure achieved frame rate

•Adjust quality settings to reach
frame rate

•Measure input latencies, adjust
handling

Streaming & video

•Adjust video quality based on
network bandwidth

•Prioritize traffic

Interrupt timing

•Change to software timing

•Changes when OS schedules
tasks

•Divergent behavior

JIT compilers

•Measures execution time using
performance counters

•Decides what to compile
dynamically

Fixed traces (often) fail to capture feedback loops in the system behavior and can be directly misleading

© Cadence Design Systems, Inc. All rights reserved.14

D2D

(N/A)

Example: For a Processor Core Architect

Processor

(cycle accurate)

Processor

(cycle accurate)

Network-on-Chip

(cycle accurate)

System-level

cache (cycle

accurate)

Memory

controller

(cycle approx)

Memory

(cycle approx)

I/O System (loosely timed)

GPU

(RTL)

AI (traffic

generator)

Video

(B)
DiskUSBNet

Add memory operations to load

the NoC and memory system.

Die-to-die has no effect.

Provide data to the software

running on the processors

Too bothersome to model

an actual camera interface,

just push in frames

D2D

(CA)

Use RTL to represent the

GPU. See next slide.

Cycle-accurate models for

the processors + closest

memory system

© Cadence Design Systems, Inc. All rights reserved.15

Using the RTL Implementation as Model

• Architecting a chip

• Buying components
o = the components are done

• Architecture = configuration &
interactions
o How many processor cores?

o How many GPU slices?

o Clock speed?

o Power budget?

o Bandwidth of the interconnect?

o Structure of the interconnect?

• Running pieces as RTL makes sense
o “Fast” with emulators and prototypes

o Modeling someone else’s design is hard

Running RTL:

emulators and

prototyping

hardware

© Cadence Design Systems, Inc. All rights reserved.16

Memory

controller

(N/A)

D2D

(N/A)

Example: For an AI Accelerator Architect

Processor

(LT)

Processor

(LT)

Network-on-Chip

(approximately timed)

System-level

cache (AT)

Memory

(LT/fixed cost)

I/O System (loosely timed)

GPU

(traffic

generator)

AI (cycle

accurate)

Video

(B)
DiskUSBNet

Run driver software and

feed the accelerator

Likely a very large model,

but largely self-contained

with occasional external

accesses

Approximations for NoC

and cache might be

enough, if memory

accesses that miss L3 are

rare

D2D

(AT)

© Cadence Design Systems, Inc. All rights reserved.17

Example: For a Device Interface Designer / Architect

Processor

(LT)

Processor

(LT)

Network-on-Chip

(LT)

Memory

controller

(LT)

I/O System (loosely timed)

DiskUSBNet

Run network driver in the

context of an operating

system and network

benchmarks

Model the programming

interface of the network

device, exactly like the

hardware

Rest-of-network

(behavior)

Add a network for the

network device to talk to, so

that interesting behaviors

can be examined – even

connecting to a real

network!

Real machines,

Internet, …

D2D

(N/A)

GPU

(N/A)

AI (N/A)
D2D

(N/A)

Memory

(LT)

Remove accelerators from

the model, remove drivers

from the OS image – not

central to device bringup

© Cadence Design Systems, Inc. All rights reserved.18

Modeling Power, Energy, Thermals

• Power is “easy”
o Power state, clock speed, voltage, …

o Essentially, functional aspects that are
set by software and firmware

• Energy is trickier
o Energy = Power * Time

o Requires a precise timing model

• Thermals are even trickier
o Requires a good energy model

o Energy to heat conversion model

o Geography of the chip

o Thermal properties of materials

o Heat propagation and cooling

o = complex physics simulation

Screenshot from Cadence Celsius

Analysis by Cadence Celsius

© Cadence Design Systems, Inc. All rights reserved.19

More Abstract Models – “Boxes and Lines” – Examples

Data

generator

Processing

Processing

type A

Processing

type B

Generate data at a

configurable rate,

configurable types

Parametrize

processing capacity –

latency vs data size,

bandwidth, …

Processing

type B

stage 2

Output

generation

Sweep through

variations in

input size and

pace

Data

generator

Network
Data

generator

Network

control

Processing

Network

router

Processing

Parametrize

bandwidth, latency.

Model contention,

policies, protocols.

Typically, does

not use concrete

data or compute

actual results

Data

generator Model

algorithms and

policies

Network

router

Storage

Protocols, buffers,

routing rulesParametrize size,

bandwidth in,

bandwidth out

Abstract models can give surprisingly accurate results – turn Excel sheet guesses into executable model

Measure processing

times on real hardware,

use as model parameter

Very suitable for complete system models beyond a single IP or chip

Unit behavior

(“box”)

Connection &

network behavior

(“box”)

Unit connections

(“lines”)

M
o
d
e
l

© Cadence Design Systems, Inc. All rights reserved.20

Example Higher-Level Model

Used with permission of Mirabilis Design

© Cadence Design Systems, Inc. All rights reserved.21

Example: From DARE Project (HiPEAC RISC-V Workshop)

© Cadence Design Systems, Inc. All rights reserved.22

Architecture

Implementation

Validation

Maintenance

© Cadence Design Systems, Inc. All rights reserved.23

System-Level VP

Cloud services

Rest-of-network simulator

Virtual board
Virtual board

Virtual Platforms – From IP to System, Developing Software

Virtual Chip

Middleware, SDKs, Libraries
Virtual IP Block

Firmware

IP-Block Level

Firmware

Firmware OS BSP

Virtual board

Middleware, SDKs, Libraries

Firmware OS BSP

Applications

Physical system model

N
e

tw
o

rk

Board is typically built to

mirror a particular real product

IP-block-level VPs for

complex subsystems with

firmware

Chip-level VP aggregates IP-

level VP with other

components on the chip

System-level virtualization mirrors

an actual system with multiple

boards, interacting with the real

world, the Internet, etc.

Develop software for the

entire system

Simulation model abstraction

level might vary.

More details and timing

accuracy for IP blocks

Fast functional for

system flows

© Cadence Design Systems, Inc. All rights reserved.24

Using Models at the Implementation Stage: Shift Left

Hardware-software integration

Hardware design

Software development Software team waiting…

Hardware design

Software stack

Hardware-software integration on virtual

Hardware design

Software stack

Software development

Hardware design

Shortening time to market

Virtual platform is

developed alongside the

hardware development =

change over time

Software team provides

feedback on the design

early Shorter time-to-market is a

primary (but not the only)

benefit

© Cadence Design Systems, Inc. All rights reserved.25

IP Block Development: Software on VP

VLAB VDM

Devices Memory

Firmware

Core Core

Memory map

Main

core

Main

core

OS

Applications

System devices: local timer,

interrupt controller, …

SoC

Device

model

Device

model

Memory map

DriverBoot code

IP block

In
te

rfa
c
e

VLAB VDM

Devices Memory

Firmware

Core Core

Memory map

IP block

In
te

rfa
c
e

Unit test

bench

Mock of SoC

Develop and test

firmware, using a stand-

alone model

Develop without RTL,

and without RTL in

FPGA or simulation

Integrate IP Block

model into SoC (and

board) model

Test IP block and firmware

functionality in a system

context

Firmware development

Boot and driver bringup SDK integration
SoC customer
enablement

IP design

IP-SoC integration
Long-term software development,
CI/CD, maintenance

VLAB VDM

Main

core

Main

core

OS

Applications

System devices: local timer,

interrupt controller, …

Device

model

Device

model

Memory map

DriverBoot code

IP block

behavior

In
te

rfa
c
e

SoC

Develop and test

applications using the

IP block

Replace firmware-

capable model with

a behavioral model

Speed up

simulation, protect

firmware and

secrets

SDK
Develop driver

and boot code

support for IP

block

Develop and test

applications using the

IP block

Develop and test

hardware SDKs

SDK

© Cadence Design Systems, Inc. All rights reserved.26

Pre- or Post-Silicon: Free Developers from Hardware Limitations

Software debugger

VDM

OS

Applications

BSP

Middleware

SoC

V-ECU

VLAB API

server

Debugger

connection

Python scripting and

control

Software

load
OS

Applications

BSP

Middleware

Apply any test configuration
on-demand – not limited by
availability of physical test rigs

Unlimited access to targets for
testing - use any PC, server, or
cloud VM to run tests

Load software to the target
system instantly – no complex
flashing or download flows Co-sim

connection

Tracing &

Logging

Network tracing

Hardware tracing

Debug better than hardware –
powerful breakpoints, complete
system inspection, debug across
all cores, …

Trace and log everything–
software, hardware, networks, …

Automate and script any action —the
simulator has perfect insight and control,
control over time, react to hardware and
software events

Inject faults, force boundary
conditions, …

© Cadence Design Systems, Inc. All rights reserved.27

Virtual Platforms as an Ecosystem Collaboration Tool

Automotive &

embedded chip

companies and

IP providers

Automotive Tier-1, Aerospace suppliers, …

OEMS: Automotive, Aerospace, …

Use VP internally for

software shift-left and

validation. Enabling

customers and software

partners.

Operating systems,

libraries, middleware

vendors, open-source

Suppliers use chip-level models to

build board-level models. Use for

internal software development and

validation. Enabling customers and

software partners.

Software tool

vendors

VPs enable early development,

virtualized development

Cloud providers

Deploy virtual platforms in

the cloud to facilitate

collaboration and easy

access for any developer

Consultants & services

VPs integrate and

support tools, enable

early support for new

chips

Provide virtual hardware

access to developers at

consulting firms

Use board-level models from suppliers.

Build board models.

Build system models and digital twins.

Extensive software development.

Long-term software maintenance.

© Cadence Design Systems, Inc. All rights reserved.28

Hardware-oriented

reference model

Architecture

Fast Functional Model Variants – Optimize for Performance

Stub device

Registers

Fast device model

Stub device

Virtio Device

Application

Driver

Registers RegistersRegisters

Host-based

implementation

API intercept

Application

Virtio driver

Application

Driver

Application

Driver

Output, side-effects, connections to other devices

Registers

Application

Driver

FunctionalityFunctionality

Functionality

1
0
0
0
×

 s
lo

w
d
o
w

n

VLAB Fusion

technology –

efficient for

compute-intense

hardware

Reference models

tend to contain

more details than a

fast model, slowing

down the simulation

Subsystem model

Registers

Application

Driver

A stub device that

does nothing can be

sufficient to make

software run

Functionality

Processor

core (ISS)

Paravirtual virtio

devices can

speed simulation

time and time to

build a system

Router

Device

model

Device

model

Memory

A full subsystem

model runs firmware

and is a small VDM

in its own right –

slower than shallow

model, but supports

more use cases

Firmware

© Cadence Design Systems, Inc. All rights reserved.29

Based on Prostep IVIP Standard Nomenclature

Automotive Variants Simpler Than Traditional Virtual Platforms

Real ECU

Target binary

Level 4 V-ECU

Target binary

Level 3 V-ECU

Production BSW
Level 2 V-ECU

Production BSW

Level 1 V-ECU

Application Level

Level 0 V-ECU

Controller model

Closeness to the real ECU

Breadth

of use

cases
Level 4-- V-ECU

Simplified binary

Target compiled

Register interface to hardware

Host compiled

Driver API emulated

ISS

Single-program

Simulation-specific code

Real code – source or binary

Application code – source or binary

© 2026 Cadence Design Systems, Inc. All rights reserved.30

Architecture

Implementation

Validation

Maintenance

© Cadence Design Systems, Inc. All rights reserved.31

Evaluating…

Validation – Does the System Work Right in Practice?

What is being tested

and/or validated?

Build the smallest possible model that

allows useful results to be produced

Fly what you test,

Test what you fly Make sure the system works right in reality

Behavior

Performance – RTL? Chips?

Test in physical and simulated world

Test what you fly, fly what you test

ADAS – simulated testing and real testing

Need the corner cases

Replay recording from the real world – note feedback loop

Dedicated hardware to record and replay

Aircon – real-world testing

Function

Performance

Power

Real world

Simulated world

Thermals

Fault tolerance

And more …

Requires specialized

measurement and test

equipment

© Cadence Design Systems, Inc. All rights reserved.32

Example: IP Block Development: Validation of the RTL
VLAB VDM

Firmware

SoC

IP block in emulator

or simulator

In
te

rfa
c
e

RTL Emulator or Simulator

RTL

Devices

RTL

Memory

RTL

Core

RTL

Core

RTL bus

IP block

In
te

rfa
c
e

Unit test

bench

Validate

firmware vs

RTL
Validate RTL vs

test benches or

firmware

Run RTL for the IP

block in the context of

the overall system

Validate the RTL and

firmware in a system

context

RTL developmentIP design

IP-SoC Integration

Software validation

RTL

Devices

RTL

Memory

RTL

Core

RTL

Core

RTL bus

Measure IP block

performance with

real-world stimuli

Firmware validation

RTL validation

RTL validation

Firmware validation

Performance testing

Firmware
Firmware

OS

Applications

DriverBoot code

Main

core

Main

core

System devices: local timer,

interrupt controller, …

Device

model

Device

model

Memory map

SDK

Validate SDK vs

RTL

Validate driver

and boot code vs

the actual RTL

Use RTL-level

power modeling

for power and

energy

© Cadence Design Systems, Inc. All rights reserved.33

Real-world system

Virtual Hardware-in-the-Loop Testing

• Hardware-in-the-Loop is the “gold
standard” for software testing
o ECU or network of ECUs

o Connected to physical simulation setups

o (whole ecosystem of solutions for this)

• Replicate with virtual platforms for
virtual testing
o Real software stack

o Simulation setup matching the real world

o Closed-loop simulation including real-
world behavior

o Real systems attached to real-time sim

• Attach test and calibration tools to
manage tests

VLAB VDM

Virtual ECU

Simulation of the

controlled system Simulation of the world

Services

Applications

CDD

RTE

MCAL

Test and calibration tools

© Cadence Design Systems, Inc. All rights reserved.34

Validating Automotive Systems

Body mechanics

ECUs & software

Sensors

Physical environment

Battery and motors

Lighting conditions

Weather, rain, ice,

temperature…

Behavior of other

vehicles

Programmed test

scenarios

Record & replay

real-world tests

Generated and

programmed tests are

necessary to reach all

corner cases for something

like ADAS or AD

Road, Surface-Tire

interface

Buildings

Randomly

generated test

scenarios

Vehicle dynamics

© 2026 Cadence Design Systems, Inc. All rights reserved.37

Architecture

Implementation

Validation

Maintenance

© Cadence Design Systems, Inc. All rights reserved.38

Deployed Systems Still Require Software Updates

Improved performance

New standards

Security fixes

Safety fixes

Actually shipping what was promised…

New operating modes

New functions

Updated functionality

Look and feel updates

© Cadence Design Systems, Inc. All rights reserved.39

Automated CI system

Continuous Integration and Deployment

Developer
changes or
adds code

Quick pre-CI
tests

Unit tests

Subsystem tests

System tests
Virtual test rigs

Physical test rigs

Test

system

VLAB VDM

VLAB VDM

VLAB VDM Sim

Deploy
code

Use appropriate

simulation setups for

each test

Some tests might be

run on hardware

© 2026 Cadence Design Systems, Inc. All rights reserved.40

Architecture

Implementation

Validation

Maintenance Conclusions

© 2026 Cadence Design Systems, Inc. All rights reserved.41

Conclusions and Summary

Expect to mix models

from different sources

and of different types

© 2026 Cadence Design Systems, Inc. All rights reserved.42

System Design

Chip (SoC)

Architecture

Component

Architecture &

Design

Component implementation

(hardware and/or software)

Component testing

and validation

System Exploration /

Requirements

SoC testing and

validation

System-level testing

and validation

System-level

acceptance

Long-term software

development

https://www.cadence.com/go/trademarks

© 2025 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks of

Cadence Design Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All

MIPI specifications are registered trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

See www.vlabworks.com and www.cadence.com for more about us!

https://www.cadence.com/go/trademarks
http://www.vlabworks.com/
http://www.cadence.com/

	Default Section
	Slide 1: Virtual Platforms for System Architecture, Development, and Test

	VLAB Works
	Slide 4: VLAB™ - Virtualization for Software Development

	Intro
	Slide 5: Architecture – And the Product Life Cycle
	Slide 6: What is a System?
	Slide 7: Systems Featuring Chips & Software

	Architecture
	Slide 8
	Slide 9: Architecting (Something) (With Models)
	Slide 10: Architecting a Chip (Generic SoC for Automotive, Mobile, etc.)
	Slide 11: Modeling Hardware Units and Interconnects
	Slide 12: Modeling Software
	Slide 13: Attention! Feedback Loops!
	Slide 14: Example: For a Processor Core Architect
	Slide 15: Using the RTL Implementation as Model
	Slide 16: Example: For an AI Accelerator Architect
	Slide 17: Example: For a Device Interface Designer / Architect
	Slide 18: Modeling Power, Energy, Thermals
	Slide 19: More Abstract Models – “Boxes and Lines” – Examples
	Slide 20: Example Higher-Level Model
	Slide 21: Example: From DARE Project (HiPEAC RISC-V Workshop)

	Implementation
	Slide 22
	Slide 23: Virtual Platforms – From IP to System, Developing Software
	Slide 24: Using Models at the Implementation Stage: Shift Left
	Slide 25: IP Block Development: Software on VP
	Slide 26: Pre- or Post-Silicon: Free Developers from Hardware Limitations
	Slide 27: Virtual Platforms as an Ecosystem Collaboration Tool
	Slide 28: Fast Functional Model Variants – Optimize for Performance
	Slide 29: Automotive Variants Simpler Than Traditional Virtual Platforms

	Validation
	Slide 30
	Slide 31: Validation – Does the System Work Right in Practice?
	Slide 32: Example: IP Block Development: Validation of the RTL
	Slide 33: Virtual Hardware-in-the-Loop Testing
	Slide 34: Validating Automotive Systems

	Maintenance
	Slide 37
	Slide 38: Deployed Systems Still Require Software Updates
	Slide 39: Continuous Integration and Deployment

	Conclusions
	Slide 40
	Slide 41: Conclusions and Summary
	Slide 42

	End
	Slide 43

