
Analysis of the Execution Time Unpredictability
caused by Dynamic Branch Prediction∗

Jakob Engblom†

Dept. of Information Technology, Uppsala University

P.O. Box 337, SE-751 05 Uppsala, Sweden

jakob@it.uu.se / http://user.it.uu.se/~jakob

Abstract

This paper investigates how dynamic branch predic-
tion in a microprocessor affects the predictability of ex-
ecution time for software running on that processor.
By means of experiments on a number of real proces-
sors employing various forms of branch prediction, we
evaluate the impact of branch predictors on execution
time predictability.

The results indicate that dynamic branch predictors
give a high and hard-to-predict variation in the execu-
tion time of even very simple loops, and that the execu-
tion time effects of branch mispredictions can be very
large relative to the execution time of regular instruc-
tions. We have observed some cases where executing
more iterations of a loop actually take less time than
executing fewer iterations, due to the effect of dynamic
branch predictors.

We conclude that current dynamic branch predic-
tions schemes are not suitable for use in real-time sys-
tems where execution time predictability is desired.

1. Introduction

When designing and verifying real-time systems, it
is often required or desireable to predict the worst-case
timing of pieces of software running on the system [5].

∗ This paper was presented at the Ninth Real-Time and Em-
bedded Technology and Applications Symposium (RTAS 2003),
proceedings published by IEEE Computer Society. The Sym-
posium was held in Washington, D.C., May 27-30, 2003, after
being moved due to SARS from Toronto, Canada, where it was
originally supposed to have been held. The proceedings still list
the location as Toronto. This version of the paper corrects some
typos found in the printed versions.
† Jakob is currently employed at Virtutech Inc. in Stockholm,

Sweden (www.virtutech.com), and holds an adjunct professor
position at Uppsala University.

Knowing the execution time properties of your code is
one of the most important parts of real-time systems
development, and failing to ascertain the timing can be
a quick way to system failure [6, 8, 25].

Determining the execution time of a program in-
volves understanding and analyzing both the flow of
the program and the timing of the processor the pro-
gram is running on. To make this process possible, it is
necessary that the hardware used is amenable to anal-
ysis, and that it is reasonably predictable in its behav-
ior. A modern microprocessor employs many complex
mechanisms to increase its performance, like pipelin-
ing, caching, parallel execution of instructions, out-of-
order execution, and branch prediction. Of these, the
prediction and analysis of branch prediction have re-
ceived relatively little research interest [4, 20].

To our knowledge, however, no work has been per-
formed to quantify how the branch predictors used in
current processors actually affect the predictability of
the execution time of a program. This paper attempts
to remedy this, using a simple experiment as described
in Section 3. We investigate the behavior of the In-
tel Pentium III (Section 6) and Pentium 4 (Section 9),
AMD Athlon (Section 7), and Sun UltraSparc II (Sec-
tion 5) and UltraSparc III (Section 8) processors. We
also give a short introduction to branch prediction in
Section 2, and finally, Section 10 contains our conclu-
sions.

2. Branch Prediction Techniques

Branch prediction is the name given to a collec-
tion of techniques that are intended to reduce the
penalty of executing branch instructions. The prob-
lem is that in a pipelined processor, the outcome of a
conditional branch can only be determined quite late
in the pipeline. Unless some guess is made as to where
the program will continue, the pipeline will be stalled
until the branch is decided since it does not know where
to fetch the next instruction. As pipelines are getting

deeper to support higher clock frequencies, branch pre-
diction is getting more advanced to compensate [12].

From an average performance perspective, branch
prediction is quite successful. The most advanced tech-
niques currently in use obtain about 95% in prediction
accuracy (the actual accuracy depends on the program
executed and can vary quite significantly).

However, from a real-time systems perspective, it
is interesting to investigate what the use of branch
prediction means for the predictability of a program’s
execution time. Advanced branch prediction is con-
sidered generally bad for execution-time predictability
[6, 11, 23], and we would like to check this assumption
by experiments.

The simplest form of branch prediction is to continue
fetching instructions sequentially beyond a branch. If
the branch falls through, no time will be lost, but if
it is taken, a time penalty is paid. This technique is
used in simple embedded processors that have short
pipelines (minimizing the penalty) and where the extra
gates for more aggressive schemes cannot be motivated.
Examples of such processors are the NEC V850 and
ARM7 [3, 22].

Since most of the execution time of a typical pro-
gram can be assumed to be spent in loops, a simple
improvement is to assume that all backwards branches
are taken. This gives us the BTFN scheme, where
backwards branches are assumed taken and forward
branches assumed not taken. This simple scheme gives
an accuracy of 65% to 70% on the EEMBC embedded
benchmarks [17]. A twist to this scheme is to allow
the compiler to set a bit in an instruction to direct the
processor to predict it as taken or not taken. This tech-
nique can bring prediction accuracy up to 75% [10], and
is found on many processors, including the PowerPC,
UltraSparc and Intel’s Pentium 4 [21, 26, 15].

Obviously, these static techniques do not make the
execution time of a program harder to analyze. It is
possible to inspect a branch instruction in a program
and easily determine how it is going to be predicted
and thus its execution time in its taken and not-taken
paths. However, to reach higher accuracy than 75%,
it is necessary to employ dynamic branch prediction
techniques.

The simplest form of dynamic predictor is the single-
level predictor, illustrated in Figure 1(a). In such
branch predictors, a branch history table tracks the
previous behavior of the branches in the program. For
each branch, a one- or two-bit counter tracks if it has
been taken or not taken previously [10, 28]. Note that
only a subset of the branches in a program can be
tracked, since the branch history table has a finite size.
In some cases, the branch prediction bits are stored in

the instruction cache, which makes the analysis more
complex since it is necessary to track which instruc-
tions are loaded into and evicted from the cache [26].

Colin and Puaut [4] demonstrated that the Pentium
branch predictor (which uses a stand-alone branch his-
tory table using two-bit counters to predict branch be-
havior) can be successfully analyzed and predicted in
isolation from cache and pipelining effects. This is ex-
pected, since the predictor behavior is local: a branch
only affects its own prediction.

Most recent processor designs for the desktop and
server field use two-level branch prediction techniques,
see Figure 1(b). In two-level predictors, the recent his-
tory of taken and not-taken branches is tracked (in or-
der to detect patterns in how branches behave or are
correlated with each other). This history is then used
together with the branch address to perform a lookup
into a branch prediction table, which makes the final
decision to predict a branch as taken or not [10, 20, 28].
The branch prediction table typically contains two-bit
counters.

�
��
��
��
�
		

�

��

������
��
	����

���
�

������
��
�
��	���������������
	����

�
��
��
��
�
		

�

��

�
��
��
��
�
		

�

��

�������������

���������
	�����
���
�

���������
�
��	���������������
	����

Figure 1. Branch prediction techniques

It is obvious that two-level branch predictors are
much harder to analyze for execution time estimation,
since they rely on the history of execution. The his-
tory can be local (kept per branch) or global (a single
history is used for all branches). Local predictors are
easier to analyze than global predictors.

Mitra and Roychoudhury have made some progress
in static analysis for global history-based two-level
branch prediction schemes like GAs and gshare [20].
However, no integration with other analyses like cache
and pipeline has been demonstrated, and the scalabil-
ity of their approach is questionable since they build a
large constraint system for the entire program.

3. Experimental Setup

The setup of our experiment is very simple, and is
derived from microbenchmark code used when trying

for{k=1; k<32; k++) {
starttimer();
for(n=0; n < 10000000; n++) // OUTER LOOP

{
for(i=0; i < k; i++) // INNER LOOP

{
__nop(); // Some compiler-dependent way to get a nop

}
}

stoptimer();
recordtime();

}

Figure 2. Code used in the experiment
to measure the timing of a memory hierarchy. The C
code is shown in Figure 2. The result of compiling
this code is typically an inner loop of three or four
instructions (depending on the architecture), with an
outer loop containing about four instructions before
and after the inner loop.

The entire loop nest fits comfortably in the instruc-
tion cache, and all variables are kept in registers, so
we can safely assume that the memory system does
not influence the results. By having a very large it-
eration count for the outer loop, the total execution
time is large enough to be measurable. Interference
by other tasks executing on the machine is minimized
by executing the benchmark many times and taking
an average. Furthermore, task switches should have a
comparatively small effect on a tight loop nest like this
(since caches and pipelines refill very quickly).

It is clear that the expected result, in the absence of
branch prediction, is that the total execution time for
the outer loop should be the greatest for k = 31, and
the least for k = 1, as seen in Figure 3.

If we divide the total execution time by k, we should
get a monotonically lower value, since the overhead of
the outer loop is amortized over more executions of
the inner loop (as seen in Figure 4). However, with
dynamic branch predictors, this is not the case.

In all graphs in this paper, we use normalized ex-
ecution times to make the relative magnitude of the
changes in execution time clearer. In graphs showing
the total execution time (like Figure 3 and Figure 5),
the time for executing with k = 1 corresponds to 1.0.
This baseline means that the relative increase in total
execution time from k = 1 to k = 31 will vary. In
graphs showing the execution time per iteration (like
Figure 4 and Figure 6), the execution time per iteration
for k = 31 corresponds to 1.0.

4. V850E

As a base case for our investigation, we use the
V850E processor from NEC [22]. This processor sim-
ply keeps fetching instructions sequentially beyond a
branch. If the branch is taken, it has to squash two in-
structions in its pipeline, incurring a two-cycle penalty.

On this processor, we get the expected result as de-
scribed above: the total execution time increases mono-
tonically (as shown in Figure 3), and the time per it-
eration decreases smoothly from k = 1 to k = 31, as
shown in Figure 4.

���	
����

����

����

����

����

����

 ����

 ����

 ����

 ����

 ����

�����

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 3. V850E, total execution time
���	
����������

 ���

 � �

 ���

 �!�

 ���

 �"�

 ���

 �#�

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 4. V850E, execution time per iteration
On this processor it is easy to predict the execution

time, since we can assume that iterating more itera-
tions of a loop takes more time, and the time for each
instruction and branch is statically known.

5. UltraSparc II

The UltraSparc II uses a simple one-level branch
predictor, with two bits of information per branch
stored in the instruction cache. The penalty for a mis-
prediction is four clock cycles, and the branch predic-
tion success rate is about 87% for integer programs and
93% for floating-point programs [26].

As seen from Figure 5, the total execution time in-
creases monotonically with increasing number of itera-

�����������������

!

"

#

$

 !

 "

 #

 $

�

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 5. UltraSparc II, total execution time

�����������������������

 ���

 ��"

 �"�

 �#"

����

���"

��"�

��#"

!���

!��"

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 6. UltraSparc II, time per iteration

tions of the inner loop1. The curve is significantly less
smooth than the one for the V850E, however.

Figure 6 is more interesting, since it shows that the
time per iteration in the inner loop increases at first,
doubling the time between k = 1 and k = 3 iterations,
and then starts to decrease rapidly. The good behavior
for k = 1 is due to the fact that branches are assumed
to be not taken when first encountered 2.

This branch predictor is similar to the Pentium
branch predictor that was analyzed in [4], and is clearly
analyzable. In the specific case of the UltraSparc II,
however, the location of the branch prediction informa-
tion in the instruction cache makes the analysis more
complex. This type of branch predictor is now start-
ing to be found even in embedded processors like the

1The only exception is a small quirk at the last datapoint,
which can be explained as a measurement error.

2The effect of assuming the opposite can be seen clearly in
Figure 14.

ARM11 [2].

6. Pentium III

The Pentium III employs a two-level dynamic
branch predictor, since it needs to keep a very deep
pipeline filled. The predictor is a Yeh and Patt PAp-
style predictor [28].

The branch predictor table contains 512 entries,
organized as a 16-way set-associative cache with the
branch address used for indexing. For each entry in
the table, there is a four-bit shift register that tracks
the outcome of the last four instances of this branch
(i.e. a local branch history). This four-bit value is used
to select a 2-bit saturating counter [9, 23].

��������������

!

"

#

$

 !

 "

 #

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 7. Pentium III, total execution time
On this processor, the execution time for the in-

ner loop varies quite significantly, and is very dissimi-
lar from the graphs obtained for the V850E. Figure 8
shows this variation clearly; the big jump between
k = 4 and k = 5 agrees with the Pentium III perfor-
mance optimization guidelines, where it is guaranteed
that loops executing less than four iterations should
have 100% correct prediction (while no such guarantees
exist for loops iterating more than four times) [14].

Even more interesting is the total execution time
numbers, as shown in Figure 7. Note that at three
points along the curve, the execution time goes down
as we execute more iterations of the inner loop. This
happens with some regularity at k = 6, k = 12, and
k = 18 iterations in the inner loop. We call this phe-
nomenon an inversion, as executing more instructions
take less time than executing fewer instructions.

The inversion effect is caused by the branch pre-
dictor. We note that the penalty for mispredicting a
branch is between 10 and 26 cycles on the Pentium III
(in the benign case that all code is in the cache) [14],
which is definitely greater than the cost of executing

��������������������

 ���

 � �

 ���

 �!�

 ���

 �"�

 ���

 �#�

 ���

 �$�

����

�� �

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 8. Pentium III, time per loop iteration
one more iteration of the loop body. Thus, if the branch
prediction algorithm works better for k = 7 than for
k = 6, the result is an inversion.

7. Athlon

The AMD Athlon processor is a newer design
than the Intel Pentium III, and it uses a two-level
global branch prediction scheme. It contains an
eight-bit global history (a shift register containing the
taken/not-taken results of the last eight branches exe-
cuted) that is used together with four bits of the in-
struction address to select a two-bit saturating pre-
diction counter from a table containing 2048 entries
[9, 16]. The minimal branch penalty is 10 cycles [1].
There are some limitations on the location and density
of branches: each 16-byte block in the L1 instruction
cache can only hold two conditional branches that are
correctly predicted. If more branches are present, mis-
predictions will result [16] (which is not a problem for
our loop nest).

As seen in Figure 9, the total execution time in-
creases monotonically (if unevenly), as we increase the
number of iterations of the inner loop. There is a big
jump at k = 9, which corresponds to a big jump in
time per iteration as can be seen in Figure 10.

Considering the per-iteration execution times shown
in Figure 10, the behavior is more complex that the
Pentium III. Especially noticeable is the jump at k = 9,
which indicates that some kind of unfavorable effect
occurs in the branch predictor after the branch history
register wraps around. A similar but smaller effect can
be seen for the UltraSparc III in Figure 12.

8. UltraSparc III

The UltraSparc III has a global two-level branch
predictor that combines 14 bits of the branch address

����������

�

�

�

�

�

 �

 �

 �

 �

 �

��

��

��

��

��

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 9. Athlon, total execution time

����������������

��$�

 ���

 � �

 ���

 �!�

 ���

 �"�

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 10. Athlon, time per loop iteration

with 12 bits of global branch history using an undocu-
mented hash function to obtain an index into a branch
history table. The branch history table contains 16384
entries, each which is a two-bit saturating counter. Sun
reports a prediction accuracy of about 95% on the
Spec95 benchmark suite. The branch misprediction
penalty is seven cycles for taken branches and less for
fall-through, which is significantly less than the Atlon,
Pentium III, and Pentium 4 processors [24].

Looking at the total execution time, shown in Fig-
ure 11, we see a rather smooth curve that indicates
that the branch prediction is working quite well. How-
ever, there are two points of inversion in the graph: at
k = 16, and k = 2. The effect at k = 2 is quite logical
as the default prediction is that an unknown backwards
branch is taken. Thus, the inner loop will always be
mispredicted for k = 1, which can match the execution
time of one extra loop iteration.

������������������

�

�

!

�

"

�

#

�

$

 �

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 11. UltraSparc III, total execution time

The time per iteration, shown in Figure 12, is also
a rather smooth curve. However, there is a bump at
k = 14, which seems to indicate that just like on the
Athlon, something happens just after the wrap-around
of the global history register. This correlates with the
inversion seen at k = 14. ������������������������

��"�

��#"

 ���

 ��"

 �"�

 �#"

����

���"

��"�

��#"

!���

!��"

!�"�

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 12. UltraSparc III, time per iteration

Analyzing execution time on this processor is quite
tricky, despite the rather smooth curves. The inver-
sions in the execution time graph indicate that sur-
prises could be lurking just around the corner. For
example, extrapolating from k = 1 to k = 13, you
would expect a lower total execution than is the case
for k = 14.

An additional issue with a branch predictor like that
on the UltraSparc III and Athlon is that they map sets
of branches to a single branch prediction table entry
[28, 10]. Thus, several branches spread across the pro-
gram will interact with each other. Determining the
set of potential interaction candidates is tricky, since it
depends on both the address of branches and the recent

history of taken and not-taken branches.

9. Pentium 4

The Pentium 4 has by far the most complex archi-
tecture of any of the processors in this investigation.
The branch prediction mechanism employed is not doc-
umented, but some facts about the general structure
have been released by Intel [13].

Built for maximum clock frequency, the Pentium 4
employs a trace cache instead of a traditional instruc-
tion cache. The trace cache integrates branch pre-
diction into the instruction cache by storing traces
of instructions that have previously been executed in
sequence, including branches. The same cache line
can include both a branch and its target, with a zero
penalty for executing the branch along the predicted
direction3. There is a “small” branch predictor in the
processor that is used to direct fetching of operations
from the trace cache.

The trace cache is fed by a front-end that fetches in-
structions from the level 2 cache Here, a second branch
predictor with a branch prediction table size of 4096
entries is employed to predict where to fetch instruc-
tions next from the L2 cache. This branch predictor
uses some form of two-level technique that depends on
the branch history, and is supposed to be more ad-
vanced than the techniques used on the Pentium III
and Athlon processors. The history is continuously fed
from the execution back-end to the front-end branch
predictor to keep it up-to-date with the program be-
havior. For our experiments, the front-end predictor
should have a minimal impact since our small loop
should be kept in the trace cache at all times.

The “misprediction pipeline” is documented as be-
ing twice as long as for the Pentium III, which should
indicate that the minimal branch misprediction penalty
is at least 20 cycles. Branch misprediction penalties
when missing the trace cache are even higher, since
that requires a fetch from the L2 cache. Overall, the
misprediction rate is about one-third lower than for the
Pentium III [13].

The results for the total execution time for the Pen-
tium 4 is shown in Figure 13. Even compared to the
Pentium III, Athlon, and UltraSparc III, this graph is
extraordinarily uneven.

We note that we have inversions at several points.
Both k = 2 and k = 3 take less time than k = 1,
which is consistent with the fact that the default guess

3With a regular cache, even a successfully predicted branch
will suffer a small penalty from having to redirect the fetching
of instructions to another line in the cache. Techniques used to
minimize this penalty in other processors includes storing copies
of the instructions found at the branch target in the branch
prediction tables.

������������

����

 ���

����

!���

����

"���

����

#���

����

$���

 ����

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 13. Pentium 4, total execution time

of the branch predictor is that a backwards branches
are taken [15] (and the horrendous penalty for a branch
misprediction even in the trace cache). We also note a
series of inversion spikes k = 23, k = 26, and k = 29
where the size of the inversion is much larger than for
either the Pentium III or UltraSparc III.������������������

��"�

 ���

 �"�

����

��"�

!���

!�"�

 � ! � " � # � $ � � ! � " � # � $ �� � �� �! �� �" �� �# �� �$!� !

Figure 14. Pentium 4, time per loop iteration

Looking at the time per iteration plotted in Fig-
ure 14, we can see that it is much higher for k = 1
compared to all other k. The times vary in a pattern
that is very unlike any other processor in this inves-
tigation, which can only be attributed to the unique
form of branch prediction employed.

The Pentium 4 is supposed to be able to predict in-
ner loops executing up to 16 iterations perfectly [15],
and this seems consistent with our measurements, since
the time per iteration increases significantly beyond
k = 16.

The branch predictor on the Pentium 4 makes it nec-
essary to investigate at least a range of possible loop
iteration counts for a loop to find its worst-case exe-
cution time, since there are many inversions. Judging

by our experiments, branches and their prediction and
misprediction time dominate the execution time of the
Pentium 4 (as long as instructions can be kept in the
cache).

10. Discussion

From the measurements in the previous sections, it
is clear that the effect of branch predictors on the ex-
ecution time of a program can be very significant.

Accounting for branch predictors using global histo-
ries in static timing analysis requires global analysis,
since the outcome of each and every branch can af-
fect how the next branch is predicted. Even for the
very simple loop structure used in this experiment, the
branch prediction algorithms have some problems ob-
taining good predictions, and the execution time per
iteration varies greatly.

Simpler one-level branch prediction techniques like
the one used on the UltraSparc II can be predictable
if they are suitably implemented (i.e. with a branch
history table separate from the instruction cache).

A processor without branch prediction, like the
V850E, has a very regular behavior where more in-
structions executed means a greater total execution
time, while on the Pentium III, Pentium 4, and Ul-
traSparc III, increasing the number of loop iterations
can actually decrease the execution time. This makes
WCET analysis more complex, since we cannot assume
that iterating a loop for the maximal number of itera-
tions comprise the worst case, and is a case analogous
to timing anomalies [5, 19], requiring WCET analy-
sis to consider very many different scenarios in order
to find the worst case. In essence, loops have to be
completely unrolled and all possible execution paths
examined to find the worst case.

Thus, we note that while modern two-level branch
prediction techniques work well on average, their be-
havior is less desirable when we seek to determine the
worst-case execution time of a program.

We further note that this paper has only addressed
the pipeline timing aspects of branch prediction, since
the code used is small enough to fit comfortably in
the instruction cache of the examined processors. For
larger programs, the branch predictor might inter-
act with the instruction cache. Often, cache fetches
are performed speculatively based on the branch pre-
diction, changing the instruction cache state. This
can have significant effects on the execution time pre-
dictability [7, 11].

In conclusion, we feel that we can safely state that
modern two-level branch prediction schemes are not
suitable in circumstances where execution time pre-
dictability is sought. Static schemes (either BTFN or

compiler-directed) are the best choice, while one-level
predictors fill a middle ground where predictability de-
pends on the implementation details.

For processors where dynamic branch prediction can
be turned off (which is quite common [27, 21]), turn
it off and rely on static prediction instead (BTFN or
compiler-directed). This will lose some performance
but gain execution time predictability.

Isolated experiments on the PowerPC 440 indicate
that this could cost up to 30% of the execution, but
also that for some programs the execution time is ac-
tually lower when not using dynamic branch prediction
[18]. Which again demonstrates the unpredictability of
branch prediction.

Overall, our findings reinforce the well-known rule of
thumb that simpler is better when it comes to building
analyzable and predictable real-time systems. Building
real-time systems requires hardware that is suitable,
and predictable timing behavior is not something that
can be introduced at the software level if the hardware
itself is unpredictable.

In the future, we plan to extend these experiments
by investigating how the effect of branch prediction is
affected by using larger loop bodies.

Acknowledgements: We thank Stefan Petters for
helping us with the measurements on the Athlon pro-
cessor, and Professor Erik Hagersten for providing the
initial impetus for the experiment. Thanks also to the
anonymous reviewers who provided valuable feedback
on the paper and helped improve the quality of the
final text.

References

[1] AMD. AMD Athlon Processor: x86 Code Optimization
Guide, February 2002. Publication no: 22007 K.

[2] ARM Ltd. The ARM11 Microprocessor and ARM
PrimeXsys Platform, October 2002. White paper found
at http://www.arm.com/armtech/ARM11.

[3] ARM Ltd. ARM 7TDMI Data Sheet, August 1995. Docu-
ment no. DDI 0029E.

[4] A. Colin and I. Puaut. Worst Case Execution Time Analysis
for a Processor with Branch Prediction. Journal of Real-
Time Systems, 18(2/3):249–274, May 2000.

[5] Jakob Engblom. Processor Pipelines and Static Worst-Case
Execution Time Analysis. PhD thesis, Dept. of Information
Technology, Uppsala University, April 2002. Acta Universi-
tatis Upsaliensis, Dissertations from the Faculty of Science
and Technology 36, http://publications.uu.se/theses/.

[6] Jennifer Eyre. The Digital Signal Processor Derby. IEEE
Spectrum, 38(6), June 2001.

[7] Christian Ferdinand, Reinhold Heckmann, Marc Langen-
bach, Florian Martin, Michael Schmidt, Henrik Theiling,

Stephan Thesing, and Reinhard Wilhelm. Reliable and Pre-
cise WCET Determination for a Real-Life Processor. In
Proc. First International Workshop on Embedded Software
(EMSOFT 2001), LNCS 2211. Springer-Verlag, October
2001.

[8] Jack Ganssle. Really Real-Time Systems. In Proc. Em-
bedded Systems Conference San Fransisco (ESC SF) 2001,
April 2001.

[9] Dayong Gu, Olivier Zendra, and Karel Driesen. The Im-
pact of Branch Prediction on Control Structures for Dy-
namic Dispatch in Java. Technical Report Number 4547,
Institut National de Recherche en Informatique et Automa-
tique (INRIA), September 2002. INRIA-Lorraine/LORIA,
www.loria.fr.

[10] Linley Gwennap. New Algorithm Improves Branch Predic-
tion. Microprocessor Report, 9(4), December 1995.

[11] Reinhold Heckmann, Marc Langenbach, Stephan Thesing,
and Reinhard Wilhelm. The Influence of Processor Archi-
tecture on the Design and the Results of WCET Tools.
IEEE Proceedings on Real-Time Systems, 2003. Accepted
for publication.

[12] J. L. Hennessy and D. A. Patterson. Computer Architecture
A Quantitative Approach. Morgan Kaufmann Publishers
Inc., 2nd edition, 1996. ISBN 1-55860-329-8.

[13] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs,
Doug Carmean, Alan Kyker, and Patrice Roussel. The Mi-
croarchitecture of the Pentium 4 Processor. Intel Technol-
ogy Journal, Q1 2001.

[14] Intel. Intel Architecture Optimization Reference Manual,
1999. Document Number: 245127-001.

[15] Intel. Intel Pentium 4 and Intel Xeon Processor Optimiza-
tion, 2001. Document Number: 248966-04.

[16] Andreas Kaiser. K7 Branch Prediction.
http://www.s.netic.de/ak/, December 1999.

[17] Markus Levy. Exploring the ARM1026EJ-S Pipeline. Mi-
croprocessor Report, April 30, 2002.

[18] Markus Levy. Benchmarks Reveal Design Tradeoffs. Mi-
croprocessor Report, February 10, 2003.

[19] Thomas Lundqvist and Per Stenström. Timing Anomalies
in Dynamically Scheduled Microprocessors. In Proc. 20th

IEEE Real-Time Systems Symposium (RTSS’99), Decem-
ber 1999.

[20] Tulika Mitra and Abhik Roychoudhury. A Framework to
Model Branch Prediction for WCET Analysis. Presented at
the WCET Workshop held in conjunction with Euromicro
Conference on Real-Time Systems, June 2002.

[21] Motorola Inc. MPC750 RISC Microprocessor Family User’s
Manual, December 2001. Document MPC750UM/D.

[22] NEC Corporation. V850E/MS1 32/16-bit Single Chip Mi-
crocontroller: Architecture, 3rd edition, January 1999. Doc-
ument no. U12197EJ3V0UM00.

[23] Stefan Petters. Worst Case Execution Time Estimation for
Advanced Processor Architectures. PhD thesis, Technische
Universität München, August 2002.

[24] Peter Song. UltraSparc-3 Aims at MP Servers. Micropro-
cessor Report, October 27, 1997.

[25] David B. Stewart. Twenty-Five Most Common Mistakes
with Real-Time Software Development. In Proc. Embedded
Systems Conference San Fransisco (ESC SF) 2001, April
2001.

[26] Sun Microsystems. UltraSPARC-IIi User’s Manual, 1997.
Part No: 805-0087-01.

[27] Sun Microsystems. UltraSPARC-III Cu User’s Manual,
May 2002.

[28] Tse-Yu Yeh and Yale N. Patt. A Comparison of Dynamic
Branch Predictors that use Two Levels of Branch History.
In Proc. of the 20th International Symposium on Computer
Architecture (ISCA’93), pages 257–266, May 1993.

